Digital Signal Processing Reference
In-Depth Information
p
=
2 . 0000 + 0 . 0000 i
2 . 0000
0 . 0000 i
2 . 0000
1 . 0000
k
= []
From these data, we construct the partial fraction expansion as
3
( 1 2 z 1 ) +
0 . 5
( 1 2 z 1 ) 2
0 . 5
( 1 2 z 1 ) 3
3
( 1
G 1 (z)
=
z 1 )
which can be reduced to the equivalent expression
0 . 5 z 2
(z
0 . 5 z 3
(z
3 z
3 z
G(z)
=
2 ) +
2 ) 2
2 ) 3
(z
(z
1 )
which differs from the partial fraction expansion shown in (2.45) or (2.79). But
let us expand
0 . 5 z 2
(z
z
0 . 5 z
(z
=
2 ) 2 +
2 ) 2
(z
2 )
and
0 . 5 z 3
(z
2 z
(z
2 z
0 . 5 z
(z
=
2 ) 3
2 ) 2
2 ) 3
(z
2 )
Substituting these expressions in the preceding form for G(z) ,weget
2 z
(z
z
3 z
3 z
G(z)
=
2 ) 3
2 ) 2 +
2 )
(z
(z
(z
1 )
which is exactly the same as the form obtained in (2.79).
Example 2.31
We can use a MATLAB function deconv(b,a) to find a few values in the inverse
z transform of a transfer function, and it is based on the recursive formula given
by (2.65). Let us select the transfer function (2.67) to illustrate this function.
%MATLAB program to find a few samples of the inverse z transform
b = [0.1 0.25 0];
a = [1 0.4 0.5];
n=5;
b= [b zeros(1, n-1)];
[x,r] = deconv(b,a)
Search WWH ::




Custom Search