Geoscience Reference
In-Depth Information
REFERENCES
Charles, C. D., et al. (2010), Millennial scale evolution of
the Southern Ocean chemical divide, Quat. Sci. Rev., 29,
399
409.
Cheng, J., Z. Liu, F. He, B. L. Otto-Bliesner, E. C. Brady, and M.
Wehrenberg (2011), Simulated two-stage recovery of Atlantic
meridional overturning circulation during the last deglaciation,
in Abrupt Climate Change: Mechanisms, Patterns, and Impacts,
Geophys. Monogr. Ser., doi:10.1029/2010GM001014, this
volume.
Clement, A. C., and L. C. Peterson (2008), Mechanisms of abrupt
climate change of the last glacial period, Rev. Geophys., 46,
RG4002, doi:10.1029/2006RG000204.
Clement, A. C., A. Hall, and A. J. Broccoli (2004), The importance
of precessional signals in the tropical climate, Clim. Dyn., 22,
327 - 341.
Davis, M. E., and L. G. Thompson (2006), An Andean ice-core
record of a middle Holocene mega-drought in North Africa and
Asia, Ann. Glaciol., 43,34 - 41.
Denton, G. H., W. S. Broecker, and R. B. Alley (2006), The Mystery
Interval 1.5 to 14.5 kyrs ago, PAGES Newsl., 14(2), 14 - 16.
de Vernal, A., C. Hillaire-Marcel, J. L. Turon, and J. Matthiessen
(2000), Reconstruction of sea-surface temperature, salinity, and
sea-ice cover in the northern North Atlantic during the last glacial
maximum based on dinocyst assemblages, Can. J. Earth Sci., 37,
725 - 750.
EPICA Community Members et al. (2006), One-to-one coupling of
glacial climate variability in Greenland and Antarctica, Nature,
444, 195
-
Adkins, J. F., K. McIntyre, and D. P. Schrag (2002), The salinity,
temperature, and
18 O of the glacial deep ocean, Science, 298,
δ
1773, doi:10.1126/science.1076252.
Anderson, R. F., et al. (2009), Wind-driven upwelling in the South-
ern Ocean and the deglacial rise in atmospheric CO 2 , Science,
323, 1443
1769
-
1448.
Andrews, J. T., A. E. Jennings, M. Kerwin, M. Kirby, W. Manley,
G. H. Miller, G. Bond, and B. MacLean (1995), A Heinrich-like
event, H-0 (DC-0): Source(s) for detrital carbonate in the North
Atlantic during the Younger Dryas chronozone, Paleoceanogra-
phy, 10, 943
-
952.
Applegate, P. J., and R. B. Alley (2011), Challenges in the use of
cosmogenic exposure dating of moraine boulders to trace the
geographic extents of abrupt climate changes: The Younger
Dryas example, in Abrupt Climate Change: Mechanisms, Patterns,
and Impacts, Geophys. Monogr. Ser., doi:10.1029/2010GM001029,
this volume.
Basak, C., E. E. Martin, K. Horikawa, and T. M. Marchitto (2010),
Southern Ocean source of
-
14 C-depleted carbon in the North
Paci
c Ocean during the last deglaciation, Nat. Geosci., 3,
773.
Berger, A., and M. F. Loutre (1991), Insolation values for
the climate of the last 10 million years, Quat. Sci. Rev., 10,
297
770
-
317.
Blunier, T., and E. J. Brook (2001), Timing of millennial-scale
climate change in Antarctica and Greenland during the last gla-
cial period, Science, 291, 109
-
198.
Flower, B. P., D. W. Hastings, H. W. Hill, and T. M. Quinn (2004),
Phasing of deglacial warming and Laurentide Ice Sheet meltwa-
ter in the Gulf of Mexico, Geology, 32, 597 - 600.
Flower, B. P., C. Williams, H. W. Hill, and D. W. Hastings (2011),
Laurentide Ice Sheet meltwater and the Atlantic meridional over-
turning circulation during the last glacial cycle: A view from the
Gulf of Mexico, in Abrupt Climate Change: Mechanisms, Pat-
terns, and Impacts, Geophys. Monogr. Ser., doi: 10.1029/
2010GM001016, this volume.
Gajewski, K., and A. E. Viau (2011), Abrupt climate changes
during the Holocene across North America from pollen and
paleolimnological records, in Abrupt Climate Change: Mechan-
isms, Patterns, and Impacts, Geophys. Monogr. Ser.,doi:
10.1029/2010GM001015, this volume.
Ganssen, G. M., and D. Kroon (2000), The isotopic signature of
planktonic foraminifera from NE Atlantic surface sediments:
Implications for the reconstruction of past oceanic conditions,
J. Geol. Soc. London, 157, 693
-
112.
Bond, G., et al. (1997), A pervasive millennial-scale cycle in North
Atlantic Holocene and glacial climates, Science, 278, 1257
-
-
1266.
Bond, G., et al. (2001), Persistent solar in
uence on North Atlantic
climate during the Holocene, Science, 294, 2130
2136.
Broecker, W. S. (2009), The mysterious 14 C decline, Radiocarbon,
51, 109
-
119.
Broecker, W. S., and S. Barker (2007), A 190% drop in atmo-
sphere
-
14 C during the
'
s
Δ
Mystery Interval
(17.5 to 14.5 kyr,
99.
Broecker, W. S., and E. Clark (2010), Search for a glacial-age 14 C-
depleted ocean reservoir, Geophys. Res. Lett., 37, L13606,
doi:10.1029/2010GL043969.
Broecker, W. S., J. P. Kennett, B. P. Flower, J. T. Teller, S. Trumbore,
G. Bonani, and W. Wolfi
Earth Planet Sci. Lett., 256,90
-
(1989), Routing of meltwater from the
Laurentide Ice Sheet during the Younger Dryas cold episode,
Nature, 341, 318
699.
Goosse, H., H. Renssen, F. M. Selten, R. J. Haarsma, and J. D.
Opsteegh (2002), Potential causes of abrupt climate events: A
numerical study with a three-dimensional climate model, Geo-
phys. Res. Lett., 29(18), 1860, doi:10.1029/2002GL014993.
Harada, N., M. Sato, and T. Sakamoto (2008), Freshwater
impacts recorded in tetraunsaturated alkenones and alkenone
sea surface temperatures from the Okhotsk Sea across millennial-
-
321.
Bryan, S. P., T. M. Marchitto, and S. J. Lehman (2010), The release
of 14 C-depleted carbon from the deep ocean during the last
deglaciation: Evidence from the Arabian Sea, Earth Planet Sci.
Lett., 298, 244
-
254.
Chapman, D. C. (2000), Boundary layer control of buoyant coastal
currents and the establishment of a shelf break front, J. Phys.
Oceanogr., 30, 2941
-
-
2955.
Search WWH ::




Custom Search