Geoscience Reference
In-Depth Information
In choosing which boulders to sample, we recommend
sampling all the tallest boulders on the moraine. If resources
for further sampling are available, additional boulders should
be chosen randomly. All the sampled boulders should be on
the crest of the moraine. The samples from the tall boulders
have a good chance of producing at least one exposure date
that correctly estimates the moraine
ments, Quat. Geochronol., 3, 174
-
195, doi:10.1016/j.quageo.
2007.12.001.
Barrows, T. T., S. J. Lehman, L. K. Fi
eld, and P. de Deckker
(2007), Absence of cooling in New Zealand and the adjacent
ocean during the Younger Dryas chronozone, Science, 318,86
-
89, doi:10.1126/science.1145873.
Barrows, T. T., S. J. Lehman, L. K. Fi
eld, and P. de Deckker
s age, assuming inheri-
tance is not important. The randomly chosen samples will
help identify the source of any geomorphic bias, if the
exposure dates from the tall boulders are widely scattered.
Moreover, the surface relief of sampled boulders should be
recorded in the
'
(2008), Response to comment on
Absence of cooling in New
Zealand and the adjacent ocean during the Younger Dryas chron-
ozone,
Science, 320, 746edoi:10.1126/science.1152216.
Benson, L., R. Madole, G. Landis, and J. Gosse (2005), New data
for Late Pleistocene Pinedale alpine glaciation from southwestern
Colorado, Quat. Sci. Rev., 24,49
field and given in papers that report new
-
65, doi:10.1016/j.quascirev.
exposure dates.
2004.07.018.
Bevington, P. R., and D. K. Robinson (2003), Data Reduction and
Error Analysis for the Physical Sciences, 336 pp., McGraw-Hill,
New York.
Bierman, P. R. (1994), Using in situ produced cosmogenic isotopes
to estimate rates of landscape evolution: A review from the
geomorphic perspective, J. Geophys. Res., 99, 13,885
Acknowledgments. This work was partly supported by the Na-
tional Science Foundation (grants 0531211, 0539578, and
0424589), the Comer Science and Education Foundation, and the
Geological Society of America (grant 8736-08). Discussions with
Tom Lowell, David Pollard, Kaitlin Walsh, Fred Phillips, Meredith
Kelly, Aaron Putnam, Roseanne Schwartz, and Ed Evenson sharp-
ened our thinking on these issues. Comments from two anonymous
researchers also improved the manuscript.
13,896.
Briner, J. P. (2009), Moraine pebbles and boulders yield indistin-
guishable 10 Be ages: A case study from Colorado, USA, Quat.
Geochronol., 4, 299
-
305, doi:10.1016/j.quageo.2009.02.010.
Briner, J. P., D. S. Kaufman, W. F. Manley, R. C. Finkel, and M. W.
Caffee (2005), Cosmogenic exposure dating of late Pleistocene
moraine stabilization in Alaska, Geol. Soc. Am. Bull., 117, 1108
-
REFERENCES
-
1120, doi:10.1130/B25649.1.
Broecker, W. S. (2003), Does the trigger for abrupt climate change
reside in the ocean or in the atmosphere?, Science, 300, 1519
Alley, R. B. (2007), Wally was right: Predictive ability of the North
Atlantic
hypothesis for abrupt climate change,
Annu. Rev. Earth Planet. Sci., 35, 241
conveyor belt
-
272, doi:10.1146/annurev.
-
earth.35.081006.131524.
Alley, R. B., et al. (1993), Abrupt increase in Greenland snow
accumulation at the end of the Younger Dryas event, Nature,
362, 527
1522, doi:10.1126/science.1083797.
Broecker, W. S. (2006), Abrupt climate change revisited, Global
Planet. Change, 54,211
-
215, doi:10.1016/j.gloplacha.2006.06.
529.
Alley, R. B., et al. (2010), History of the Greenland Ice Sheet:
Paleoclimatic insights, Quat. Sci. Rev., 29, 1728
-
019.
Broecker, W. S., J. P. Kennett, B. P. Flower, J. T. Teller, S. Trum-
bore, G. Bonani, and W. Wol
-
1756, doi:10.
i (1989), Routing of meltwater
from the Laurentide Ice Sheet during the Younger Dryas cold
episode, Nature, 341, 318
1016/j.quascirev.2010.02.007.
Applegate, P. J. (2009), Estimating the ages of glacial land-
forms from the statistical distributions of cosmogenic exposure
dates, Ph.D. thesis, Pa. State Univ., University Park. (Available
at http://etda.libraries.psu.edu/)
Applegate, P. J., T. V. Lowell, and R. B. Alley (2008), Comment on
321.
Cerling, T. E., and H. Craig (1994), Geomorphology and in-situ
cosmogenic isotopes, Annu. Rev. Earth Planet. Sci., 22,273
-
317.
Chambers, J. M., W. S. Cleveland, P. A. Tukey, and B. Kleiner
(1983), Graphical Methods for Data Analysis, 395 pp., Duxbury,
London.
Chiang, J. C. H., and C. M. Bitz (2005), In
-
Absence of cooling in New Zealand and the adjacent ocean
during the Younger Dryas chronozone,
Science, 320, 746,
uence of high latitude
ice cover on the marine Intertropical Convergence Zone, Clim.
Dyn., 25, 477
doi:10.1126/science.1152098.
Applegate, P. J., N. M. Urban, K. Keller, and R. B. Alley (2010),
Modeling the statistical distributions of cosmogenic exposure
dates from moraines, Geosci. Model Dev., 3, 293
496, doi:10.1007/s00382-005-0040-5.
Denton, G. H., and C. H. Hendy (1994), Younger Dryas age
advance of Franz Josef Glacier in the Southern Hemisphere,
New Zealand, Science, 264, 1434
-
307.
Balco, G., and J. M. Schaefer (2006), Cosmogenic-nuclide and
varve chronologies for the deglaciation of southern New En-
gland, Quat. Geochronol., 1,15
-
1437.
Denton, G. H., R. B. Alley, G. C. Comer, and W. S. Broecker
(2005), The role of seasonality in abrupt climate change, Quat.
Sci. Rev., 24, 1159
-
-
28, doi:10.1016/j.quageo.
2006.06.014.
Balco, G., J. O. Stone, N. A. Lifton, and T. J. Dunai (2008), A
complete and easily accessible means of calculating surface
exposure ages or erosion rates from 10Be and 26Al measure-
1182, doi:10.1016/j.quascirev.2004.12.002.
Fabel, D., and J. Harbor (1999), The use of in-situ produced cos-
mogenic radionuclides in glaciology and glacial geomorphology,
Ann. Glaciol., 28, 103
-
-
110.
Search WWH ::




Custom Search