Biology Reference
In-Depth Information
Valigurov´, A., Hofmannov´, L., Koudela, B., V´vra, J., 2007. An ultrastructural comparison
of the attachment sites between Gregarina steini and Cryptosporidium muris . J. Eukaryot.
Microbiol. 54, 495-510.
van Dooren, G.G., Kennedy, A.T., McFadden, G.I., 2012. The use and abuse of heme in
apicomplexan parasites. Antioxid. Redox Signal. 17, 634-656.
Waller, R.F., Jackson, C.J., 2009. Dinoflagellate mitochondrial genomes: stretching the rules
of molecular biology. BioEssays 31, 237-245.
Waller, R.F., Keeling, P.J., 2006. Alveolate and chlorophycean mitochondrial cox2 split
twice independently. Gene 383, 33-37.
Waller, R.F., Keeling, P.J., van Dooren, G.G., McFadden, G.I., 2003. Comment on “A
green algal apicoplast ancestor” Science 301, 5629.
Watanabe, M.M., Suda, S., Inouye, I., Sawaguchi, T., Chihara, M., 1990. Lepidodinium viride
gen. et sp. nov. (Gymnodiniales, Dinophyta), a green dinoflagellate with a chlorophyll a
containing and b containing endosymbiont. J. Phycol. 26, 741-751.
Weatherby, K., Murray, S., Carter, D., Slapeta, J., 2011. Surface and flagella morphology of
the motile form of Chromera velia revealed by field-emission scanning electron micros-
copy. Protist 162, 142-153.
Wiesner, J., Jomaa, H., 2007. Isoprenoid biosynthesis of the apicoplast as drug target. Curr.
Drugs Targets 8, 3-13.
Wiesner, J., Reichenberg, A., Heinrich, S., Schlitzer, M., Jomaa, H., 2008. The plastid-
like organelle of apicomplexan parasites as drug target. Curr. Pharm. Design 14,
855-871.
Williams, B.A.P., Keeling, P.J., 2003. Cryptic organelles in parasitic protists and fungi. Adv.
Parasitol. 54, 9-68.
Williamson, D.H., Gardner, M.J., Preiser, P., Moore, D.J., Rangachari, K., Wilson, R.J.M.,
1994. The evolutionary origin of the 35 kb circular DNA of Plasmodium falciparum new
evidence supports a possible rhodophyte ancestry. Mol. Gen. Genet. 243, 249-252.
Wilson, R.J.M., 2002. Progress with parasite plastids. J. Mol. Biol. 319, 257-274.
Wilson, R.J.M., Williamson, D.H., 1997. Extrachromosomal DNA in the Apicomplexa.
Microbiol. Mol. Biol. Rev. 61, 1-16.
Woehle, C., Dagan, T., Martin, W.F., Gould, S.B., 2011. Red and problematic green phy-
logenetic signals among thousands of nuclear genes from the photosynthetic and
apicomplexa-related Chromera velia . Genome Biol. Evol. 3, 1220-1230.
Xu, P., Widmer, G., Wang, Y.P., Ozaki, L.S., Alves, J.M., Serrano, M.G., Puiu, D.,
Manque, P., Akiyoshi, D., Mackey, A.J., Pearson, W.R., Dear, P.H., Bankier, A.T.,
Peterson, D.L., Abrahamsen, M.S., Kapur, V., Tzipori, S., Buck, G.A., 2004. The
genome of Cryptosporidium hominis . Nature 431, 1107-1112.
Yeh, E., DeRisi, J.L., 2011. Chemical rescue of malaria parasites lacking an apicoplast defines
organelle function in blood-stage Plasmodium falciparum . PLoS Biol. 9, e1001138.
York Jr., R.H., 1986. Isolation and culture of symbiotic algae. In: Jokiel, P.L.,
Richmond, R.H., Rogers, R.A. (Eds.), Coral Reef Population Biology. Hawaii
University, Sea Grant College Program, Honolulu, HI, pp. 486-487.
Zhang, Z.D., Cavalier-Smith, T., Green, B.R., 1999. Single gene circles in dinoflagellate
chloroplast genomes. Nature 400, 155-159.
Zhang, Z.D., Cavalier-Smith, T., Green, B.R., 2000. Phylogeny of ultra-rapidly evolving
dinoflagellate chloroplast genes: a possible common origin for sporozoan and dinoflagel-
late plastids. J. Mol. Evol. 51, 26-40.
Zhu, G., Marchewka, M.J., Keithly, J.S., 2000a. Cryptosporidium parvum appears to lack a
plastid genome. Microbiology 146, 315-321.
Zhu, G., Keithly, J.S., Philippe, H., 2000b. What is the phylogenetic position of Cryptospo-
ridium ? Int. J. Syst. Evol. Microbiol. 50, 1673-1681.
Search WWH ::




Custom Search