Biology Reference
In-Depth Information
Veldhuis, J.D., Roemmich, J.N., Richmond, E.J., Rogol, A.D., Lovejoy, J.C., Sheffield-
Moore, M., Mauras, N., Bowers, C.Y., 2005. Endocrine control of body composition
in infancy, childhood, and puberty. Endocr. Rev. 26, 114-146.
Verdijk, L.B., Jonkers, R.A., Gleeson, B.G., Beelen, M., Meijer, K., Savelberg, H.H.,
Wodzig, W.K., Dendale, P., van Loon, L.J., 2009. Protein supplementation before
and after exercise does not further augment skeletal muscle hypertrophy after resistance
training in elderly men. Am. J. Clin. Nutr. 89, 608-616.
Verdijk, L.B., Snijders, T., Beelen, M., Savelberg, H.H., Meijer, K., Kuipers, H., Van
Loon, L.J., 2010. Characteristics of muscle fiber type are predictive of skeletal muscle
mass and strength in elderly men. J. Am. Geriatr. Soc. 58, 2069-2075.
Vissing, K., Brink, M., Lonbro, S., Sorensen, H., Overgaard, K., Danborg, K., Mortensen, J.,
Elstrom, O., Rosenhoj, N., Ringgaard, S., Andersen, J.L., Aagaard, P., 2008. Muscle
adaptations to plyometric vs. resistance training in untrained young men. J. Strength
Cond. Res. 22, 1799-1810.
Vladutiu, G.D., Heffner, R.R., 2000. Succinate dehydrogenase deficiency. Arch. Pathol.
Lab. Med. 124, 1755-1758.
von Walden, F., Casagrande, V., Ostlund Farrants, A.K., Nader, G.A., 2012. Mechanical
loading induces the expression of a Pol I regulon at the onset of skeletal muscle hyper-
trophy. Am. J. Physiol. Cell Physiol. 302, C1523-C1530.
Wachstein, M., Meisel, E., 1955. The distribution of histochemically demonstrable succinic
dehydrogenase and of mitochondria in tongue and skeletal muscles. J. Biophys. Bio-
chem. Cytol. 1, 483-488.
Walker, U.A., Schon, E.A., 1998. Neurotrophin-4 is up-regulated in ragged-red fibers asso-
ciated with pathogenic mitochondrial DNA mutations. Ann. Neurol. 43, 536-540.
Wallace, D.C., 2010. Mitochondrial DNA mutations in disease and aging. Environ. Mol.
Mutagen. 51, 440-450.
Wanagat, J., Cao, Z., Pathare, P., Aiken, J.M., 2001. Mitochondrial DNA deletion muta-
tions colocalize with segmental electron transport system abnormalities, muscle fiber
atrophy, fiber splitting, and oxidative damage in sarcopenia. FASEB J. 15, 322-332.
Welvaart, W.N., Paul, M.A., van Hees, H.W., Stienen, G.J., Niessen, J.W., de Man, F.S.,
Sieck, G.C., Vonk-Noordegraaf, A., Ottenheijm, C.A., 2011. Diaphragm muscle fiber
function and structure in humans with hemidiaphragm paralysis. Am. J. Physiol. Lung
Cell. Mol. Physiol. 301, L228-L235.
Wirsen, C., Larsson, K.S., 1964. Histochemical differentiation of skeletal muscle in foetal and
newborn mice. J. Embryol. Exp. Morphol. 12, 759-767.
Wu, Y., Zhao, J., Zhao, W., Pan, J., Bauman, W.A., Cardozo, C.P., 2012. Nandrolone nor-
malizes determinants of muscle mass and fiber
type after
spinal cord injury.
J. Neurotrauma 29, 1663-1675.
Wust, R.C., Myers, D.S., Stones, R., Benoist, D., Robinson, P.A., Boyle, J.P., Peers, C.,
White, E., Rossiter, H.B., 2012. Regional skeletal muscle remodeling and mitochon-
drial dysfunction in right ventricular heart failure. Am. J. Physiol. Heart Circ. Physiol.
302, H402-H411.
Yan, Z., Okutsu, M., Akhtar, Y.N., Lira, V.A., 2011. Regulation of exercise-induced fiber
type transformation, mitochondrial biogenesis, and angiogenesis in skeletal muscle.
J. Appl. Physiol. 110, 264-274.
Zhao, Y., Li, J., Lin, A., Xiao, M., Xiao, B., Wan, C., 2011. Improving angiogenesis and
muscle performance in the ischemic limb model by physiological ischemic training in
rabbits. Am. J. Phys. Med. Rehabil. 90, 1020-1029.
 
Search WWH ::




Custom Search