Biology Reference
In-Depth Information
Murakami, S., Fujino, H., Takeda, I., Momota, R., Kumagishi, K., Ohtsuka, A., 2010.
Comparison of capillary architecture between slow and fast muscles in rats using a con-
focal laser scanning microscope. Acta Med. Okayama 64, 11-18.
Murphy, K.T., Koopman, R., Naim, T., Leger, B., Trieu, J., Ibebunjo, C., Lynch, G.S.,
2010. Antibody-directed myostatin inhibition in 21-mo-old mice reveals novel roles
for myostatin signaling in skeletal muscle structure and function. FASEB J. 24,
4433-4442.
Narici, M.V., de Boer, M.D., 2011. Disuse of the musculo-skeletal system in space and on
earth. Eur. J. Appl. Physiol. 111, 403-420.
Natanek, S.A., Riddoch-Contreras, J., Marsh, G.S., Hopkinson, N.S., Man, W.D.,
Moxham, J., Polkey, M.I., Kemp, P.R., 2011. Yin Yang 1 expression and localisation
in quadriceps muscle in COPD. Arch. Bronconeumol. 47, 296-302.
Naviaux, R.K., 2000. Mitochondrial DNA disorders. Eur. J. Pediatr. 159 (Suppl. 3),
S219-S226.
Newsholme, P., Gaudel, C., Krause, M., 2012. Mitochondria and diabetes. An intriguing
pathogenetic role. Adv. Exp. Med. Biol. 942, 235-247.
Nicol, C.J., Bruce, D.S., 1981. Effect of hyperthyroidism on the contractile and histochem-
ical properties of fast and slow twitch skeletal muscle in the rat. Pflugers Arch. 390,
73-79.
Oberbach, A., Bossenz, Y., Lehmann, S., Niebauer, J., Adams, V., Paschke, R.,
Schon, M.R., Bluher, M., Punkt, K., 2006. Altered fiber distribution and fiber-specific
glycolytic and oxidative enzyme activity in skeletal muscle of patients with type 2 dia-
betes. Diabetes Care 29, 895-900.
Oceandy, D., Cartwright, E.J., Neyses, L., 2009. Ras-association domain family member 1A
(RASSF1A)-where the heart and cancer meet. Trends Cardiovasc. Med. 19, 262-267.
Odom, G.L., Banks, G.B., Schultz, B.R., Gregorevic, P., Chamberlain, J.S., 2010. Preclin-
ical studies for gene therapy of Duchenne muscular dystrophy. J. Child Neurol. 25,
1149-1157.
Old, S.L., Johnson, M.A., 1989. Methods of microphotometric assay of succinate dehydro-
genase and cytochrome c oxidase activities for use on human skeletal muscle. Histochem.
J. 21, 545-555.
Ouyang, L., Grosse, S.D., Kenneson, A., 2008. Health care utilization and expenditures for
children and young adults with muscular dystrophy in a privately insured population.
J. Child Neurol. 23, 883-888.
Ovalle, W.K., Smith, R.S., 1972. Histochemical identification of three types of intrafusal
muscle fibers in the cat and monkey based on the myosin ATPase reaction. Can. J. Phy-
siol. Pharmacol. 50, 195-202.
Pachter, B.R., Colbjornsen, C., 1983. Rat extraocular muscle. 2. Histochemical fibre types.
J. Anat. 137 (Pt. 1), 161-170.
Padykula, H.A., Gauthier, G.F., 1963. Cytochemical studies of adenosine triphosphatases in
skeletal muscle fibers. J. Cell Biol. 18, 87-107.
Padykula, H.A., Herman, E., 1955. Factors affecting the activity of adenosine triphosphatase
and other phosphatases as measured by histochemical
techniques.
J. Histochem.
Cytochem. 3, 161-169.
Payne, B.A., Wilson, I.J., Hateley, C.A., Horvath, R., Santibanez-Koref, M., Samuels, D.C.,
Price, D.A., Chinnery, P.F., 2011. Mitochondrial aging is accelerated by anti-retroviral
therapy through the clonal expansion of mtDNA mutations. Nat. Genet. 43, 806-810.
Philp, A., Baar, K., 2012. Fine-tuning metabolism—how products of contraction regulate
skeletal muscle adaptation. Am. J. Physiol. Endocrinol. Metab. 302, E1313-E1314.
Philp, A., Hargreaves, M., Baar, K., 2012. More than a store: regulatory roles for glycogen in
skeletal muscle adaptation to exercise. Am.
J. Physiol. Endocrinol. Metab. 302,
E1343-E1351.
 
 
Search WWH ::




Custom Search