Information Technology Reference
In-Depth Information
(
)
Lemma 2. Assuming that ()
x is an semiorthogonal scaling function.
Bzz is
,
12
the symbol of the sequence {( )}
bk defined in (3). Then we have
2
2
2
2
Π=
Bz z B z z
(, )
+−
( , )
+
Bz z
(,
− +−−
)
B z z
( ,
)
(17)
12
12
1
2
1
2
2
x is an orthogonal bivariate function, then
()
(
)
Proof. If
h
ωπ
+
2
1
.
2
kZ
Therefore, by Lemma 1 and formula (2), we obtain that
=
1
|
Be
(
i
(
ωπ
2 )
+
k
,
e
i
(
ω π
2
+
k
)
)
h
((
ωω
,
) 2
+
(
k k
,
)
π
) |
2
1
1
2
2
12
12
2
kZ
=
|
Bz z
(, )
h
(
ωπ
+
2 )|
k
2
+
|
B z z
( , )
h
(
ωπ
+
2
k
+
,0))|
π
2
12
2
12
2
kZ
kZ
+
|
Bz z
(,
−⋅
)
h
(
ωπ
+
2
k
+
(0, ))|
π
2
+ −−⋅
|
B z z
( ,
)
h
(
ωπ
+
2
k
+
, ))|
π
2
1
2
2
1
2
2
kZ
kZ
=
2
2
2
2
B zz Bzz Bz z Bz z
(, )
+−
( , )
+
(,
− +−−
)
( ,
)
12
12
1
2
1
2
This complete the proof of Lemma 2. Similarly, we can obtain Lemma 3 from (3),
(8), (13).
Lemma 3. If
ψ
()
x
ν =
0,1, 2, 3
(
) are orthogonal wavelet functions associated with
ν
hx . Then we have
()
1
()
λ
j
+
1
j
()
λ
j
j
()
ν
j
j
+
B
((
1)
z
, (
1)
z
)
{
B
((
1)
z
, (
1)
z B
)
((
1)
z
, (
1)
z
)
1
2
j
=
0
1
2
1
2
) }:
=
δ
,
λ ν
,
{0,1,2,3}.
()
ν
j
+
1
j
B
((
1)
z
, ( 1)
z
(18)
λμ
,
λν
,
1
2
For an arbitrary positive integer nZ +
, expand it by
=
j
1
n
ν
4,
ν
∈Δ =
{0,1, 2, 3}
. (19)
j
j
j
=
1
Lemma 4. Let nZ +
and n be expanded as (17). Then we have
i
ω
i
ω
()
1
2
()
ν
()
Λ=
ω
Be e
(
j
,
j
)
Λ
0 .
j
2
2
n
0
=
1
j
Lemma 4 can be inductively proved from formulas (14) and (18).
Theorem 1. For nZ +
kZ
3
,
, we have
Λ⋅ Λ⋅−
(),
(
k
)
=
δ
. (20)
n
n
0,
k
Proof. Formula (20) follows from (10) as n=0. Assume formula (20) holds for
the case of
0
≤<
4 r
r is a positive integer). Consider the case of
(
0
4
r
≤<
n
4
r
+
1
ν ∈Δ
. For
, by induction assumption and Lemma 1, Lemma 3 and
0
0
Lemma 4, we have
 
Search WWH ::




Custom Search