Geoscience Reference
In-Depth Information
Expanding each atmospheric variable in mean and fluctuating parts this becomes:
(
)
(
)
(
)
(
)
ww
+′
ww
+′
ww
+′
ww
+′
(
)
(
)
(
)
++′
uu
++′
vv
+ +′
ww
(17.19)
t
x
y
z
(
)
(
)
(
)
(
)
PP
2
2
2
+′
ww ww ww
+′
+′
+′
q
1
=−
g
1
+
u
+
+
r
2
2
2
q
z
x
y
z
a
Multiplying out and averaging the last equation, gives:
ww w w w
∂∂
w
++ +
u
u
+′
u
+′
u
t
t
x
x
x
x
w
w
w
w
w
w
w
w
v
+
v
+
+′
v
+′
v
+
w
+
w
+ ′
w
+ ′
w
(17.20)
y
y
y
y
z
z
z
z
2
w
2
2
2
2
2
q
1
P
1
P
w
w
w
w
w
=− +
gg
+
u
+
+
+
+
+
r
r
2
2
2
2
2
2
z
z
x
x
y
y
z
z
q
a
a
Applying Reynolds averaging rules removes terms 2, 4, 5, 8, 9, 12, 13, 16, 18, 20, 22,
and 24 from this equation. Rearranging the remaining terms then gives:
2
2
2
w www P www w w w
u
1
(17.21)
+
+ +
v w g
−−
+
u
+ +
−′
u
+′
v w
+′
r
2
2
2
t
x
y
z
z
x
y
z
x
y
z
a
It is now appropriate to re-write the final term in this last equation so that its
relationship to turbulent fluxes becomes more obvious, as follows.
Multiplying Equation (17.17) by w
and taking the time average gives:
u
v
w
(17.22)
w
+′
w
+′
w
=
0
x
y
z
Subtracting this zero identity from Equation (17.21) and re-expressing the resulting
equation in more concise form gives:
w
w
w
u
v
w
dw
P
1
2
−−
g
+∇−′
u
w
u
+′
v
+′
w
+′
w
+′
w
+′
w
(17.23)
dt
r
z
x
y
z
x
y
z
a
 
Search WWH ::




Custom Search