Chemistry Reference
In-Depth Information
151. Popovi´ Z, Liu W, Chauhan VP, Lee J, Wong C, Greytak AB, Insin N, Nocera DG,
Fukumura D, Jain RK, Bawendi MG (2010) A nanoparticle size series for in vivo fluores-
cence imaging. Angew Chem Int Ed 122:8649
152. Eghtedari M, Oraevsky A, Copland JA, Kotov NA, Conjusteau A, Motamedi M (2007) High
sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system.
Nano Lett 7:1914
153. Li P-C, Wei C-W, Liao C-K, Chen C-D, Pao K-C, Wang C-RC, Wu Y-N, Shieh D-B (2007)
Photoacoustic imaging of multiple targets using gold nanorods. IEEE Trans Ultrason
Ferroelectr Freq Control 54:1642
154. Jokerst JV, Cole AJ, Van de Sompel D, Gambhir SS (2012) Gold nanorods for ovarian cancer
detection with photoacoustic imaging and resection guidance via raman imaging in living
mice. ACS Nano 6:10366
155. Li P-C, Wang C-RC, Shieh D-B, Wei C-W, Liao C-K, Poe C, Jhan S, Ding A-A, Wu Y-N
(2008) In vivo photoacoustic molecular imaging with simultaneous multiple selective
targeting using antibody-conjugated gold nanorods. Opt Express 16:18605
156. Huang G, Yang S, Yuan Y, Xing D (2011) Combining X-ray and photoacoustics for in vivo
tumor imaging with gold nanorods. Appl Phys Lett 99:123701
157. Song KH, Kim C, Cobley CM, Xia Y, Wang LV (2008) Near-infrared gold nanocages as a
new class of tracers for photoacoustic sentinel lymph node mapping on a rat model. Nano Lett
9:183
158. Bao C, Beziere N, del Pino P, Pelaz B, Estrada G, Tian F, Ntziachristos V, de la Fuente JM,
Cui D (2013) Gold nanoprisms as optoacoustic signal nanoamplifiers for in vivo bioimaging
of gastrointestinal cancers. Small 9:68
159. Orendorff CJ, Sau TK, Murphy CJ (2006) Shape-dependent plasmon-resonant gold
nanoparticles. Small 2:636
160. El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer
space of different shapes. Acc Chem Res 34:257
161. Alkilany AM, Thompson LB, Boulos SP, Sisco PN, Murphy CJ (2012) Gold nanorods: their
potential for photothermal therapeutics and drug delivery, tempered by the complexity of
their biological interactions. Adv Drug Deliv Rev 64:190
162. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin
163. Skirtach AG, Dejugnat C, Braun D, Susha AS, Rogach AL, Parak WJ, M¨hwald H,
Sukhorukov GB (2005) The role of metal nanoparticles in remote release of encapsulated
materials. Nano Lett 5:1371
164. Chou C-H, Chen C-D, Wang CRC (2005) Highly efficient, wavelength-tunable, gold nano-
particle based optothermal nanoconvertors. J Phys Chem B 109:11135
165. Pissuwan D, Valenzuela SM, Cortie MB (2006) Therapeutic possibilities of plasmonically
heated gold nanoparticles. Trends Biotechnol 24:62
166. Pitsillides CM, Joe EK, Wei X, Anderson RR, Lin CP (2003) Selective cell targeting with
light-absorbing microparticles and nanoparticles. Biophys J 84:4023
167. Nam J, Won N, Jin H, Chung H, Kim S (2009) pH-Induced aggregation of gold nanoparticles
for photothermal cancer therapy. J Am Chem Soc 131:13639
168. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal
therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115
169. Chen J, McLellan JM, Siekkinen A, Xiong Y, Li Z-Y, Xia Y (2006) Facile synthesis of
gold-silver nanocages with controllable pores on the surface. J Am Chem Soc 128:14776
170. Chen J, Glaus C, Laforest R, Zhang Q, Yang M, Gidding M, Welch MJ, Xia Y (2010) Gold
nanocages as photothermal transducers for cancer treatment. Small 6:811
171. Au L, Zheng D, Zhou F, Li Z-Y, Li X, Xia Y (2008) A quantitative study on the photothermal
effect of immuno gold nanocages targeted to breast cancer cells. ACS Nano 2:1645
172. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ,
West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic
resonance guidance. Proc Natl Acad Sci USA 100:13549
Search WWH ::




Custom Search