Chemistry Reference
In-Depth Information
92. Lin S, Zhao Y, Nel AE, Lin S (2012) Zebrafish: an in vivo model for nano EHS studies.
Small. doi: 10.1002/smll.201202115
93. George S, Xia T, Rallo R, Zhao Y, Ji Z, Lin S, Wang X, Zhang H, France B, Schoenfeld D,
Damoiseaux R, Liu R, Lin S, Bradley KA, Cohen Y, Nel AE (2011) Use of a high-throughput
screening approach coupled with in vivo zebrafish embryo screening to develop hazard
ranking for engineered nanomaterials. ACS Nano 5:1805
94. Fako VE, Furgeson DY (2009) Zebrafish as a correlative and predictive model for assessing
biomaterial nanotoxicity. Adv Drug Deliv Rev 61:478
95. Simmons SO, Fan C-Y, Ramabhadran R (2009) Cellular stress response pathway system as a
sentinel ensemble in toxicological screening. Toxicol Sci 111:202
96. Yang L, Kemadjou J, Zinsmeister C, Bauer M, Legradi J, Muller F, Pankratz M, Jakel J,
Strahle U (2007) Transcriptional profiling reveals barcode-like toxicogenomic responses in
the Zebrafish embryo. Genome Biol 8:R227
97. Harper SL, Carriere JL, Miller JM, Hutchison JE, Maddux BLS, Tanguay RL (2011)
Systematic evaluation of nanomaterial toxicity: utility of standardized materials and rapid
assays. ACS Nano 5:4688
98. Pan Y, Leifert A, Graf M, Schiefer F, Thor ยจ e-Boveleth S, Broda J, Halloran MC, Hollert H,
Laaf D, Simon U, Jahnen-Dechent W (2013) High-sensitivity real-time analysis of nanopar-
ticle toxicity in green fluorescent protein-expressing zebrafish. Small 863
99. Razansky D, Distel M, Vinegoni C, Ma R, Perrimon N, Koster RW, Ntziachristos V (2009)
Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo. Nat
Photonics 3:412
100. Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold
nanoparticles for biomedicine. Chem Soc Rev 41:2740
101. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer
chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent
Smancs. Cancer Res 46:6387
102. Tkachenko AG, Xie H, Coleman D, Glomm W, Ryan J, Anderson MF, Franzen S, Feldheim
DL (2003) Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. J Am
Chem Soc 125:4700
103. de la Fuente JM, Berry CC (2005) Tat peptide as an efficient molecule to translocate gold
nanoparticles into the cell nucleus. Bioconjug Chem 16:1176
104. Chen J, Wang D, Xi J, Au L, Siekkinen A, Warsen A, Li Z-Y, Zhang H, Xia Y, Li X (2007)
Immuno gold nanocages with tailored optical properties for targeted photothermal destruc-
tion of cancer cells. Nano Lett 7:1318
105. Lu W, Xiong C, Zhang G, Huang Q, Zhang R, Zhang JZ, Li C (2009) Targeted photothermal
ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated
hollow gold nanospheres. Clin Cancer Res 15:876
106. Shilo M, Reuveni T, Motiei M, Popovtzer R (2012) Nanoparticles as computed tomography
contrast agents: current status and future perspectives. Nanomedicine 7:257
107. Barreto JA, O'Malley W, Kubeil M, Graham B, Stephan H, Spiccia L (2011) Nanomaterials:
applications in cancer imaging and therapy. Adv Mater 23:H18
108. Willmann JK, van Bruggen N, Dinkelborg LM, Gambhir SS (2008) Molecular imaging in
drug development. Nat Rev Drug Discov 7:591
109. Krause W (2002) Liver specific X-ray contrast agents. Top Curr Chem 222:173
110. Wang H, Zheng L, Guo R, Peng C, Shen M, Shi X, Zhang G (2012) Dendrimer-entrapped
gold nanoparticles as potential CT contrast agents for blood pool imaging. Nanoscale Res
Lett 7:190
111. Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Gold nanoparticles: a new X-ray
contrast agent. Br J Radiol 79:248
112. Kojima C, Umeda Y, Ogawa M, Harada A, Magata Y, Kono K (2010) X-ray computed
tomography contrast agents prepared by seeded growth of gold nanoparticles in PEGylated
dendrimer. Nanotechnology 21:245104
Search WWH ::




Custom Search