Biomedical Engineering Reference
In-Depth Information
61. Katahira S, Fujita Y, Mizuike A et al (2004) Construction of a xylan-fermenting yeast strain
through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces
cerevisiae cells. Appl Environ Microbiol 70:5407-5414
62. Stephanopoulos G (2007) Challenges in engineering microbes for biofuels production.
Science 315:801-804
63. Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production:
current status. Appl Microbiol Biotechnol 63:258-266
64. Aristidou A, Penttilä M (2000) Metabolic engineering applications to renewable resource
utilization. Curr Opin Microbiol 11:187-198
65. Zhang M, Eddy C, Deanda K et al (1995) Metabolic engineering of a pentose metabolism
pathway in ethanologenic Zymomonas mobilis. Science 267:240-243
66. Deanda K, Zhang M, Eddy C et al (1996) Development of an arabinose-Fermenting Zymomonas
mobilis strain by metabolic pathway engineering. Appl Env Microbiol 62:4465-4470
67. Mohagheghi A, Evans K, Chou YC et al (2002) Cofermentation of glucose, xylose, and
arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas
mobilis AX101. Appl Biochem Biotechnol 98-100:885-898
68. Seo JS, Chong H, Park HS et al (2005) The genome sequence of the ethanologenic bacterium
Zymomonas mobilis ZM4. Nat Biotechnol 23:63-68
69. Lee KY, Park JM, Kim TY et al (2010) The genome-scale metabolic network analysis of
Zymomonas mobilis ZM4 explains physiological features and suggests ethanol and succinic
acid production strategies. Microb Cell Fact 9:94
70. Picataggio S (2009) Potential impact of synthetic biology on the development of microbial
systems for the production of renewable fuels and chemicals. Curr Opin Biotechnol 20:325-329
71. Mukhopadhyay A, Redding AM, Rutherford BJ (2008) Importance of systems biology in
engineering microbes for biofuel production. Curr Opin Biotechnol 19:228-234
72. Reisch M (2006) Fuels of the future: Chemistry and agriculture join to make a new
generation of renewable fuels. Chem Eng News 84(47):30-32
73. Thomas KC, Hynes SH, Ingledew WM (1996) Practical and theoretical considerations in the
production of high concentration of alcohol by fermentation. Process Biochem 31:321-331
74. Kotter P, Amore R, Hollenberg CP, Ciriacy M (1990) Isolation and characterization of the
P.
stipitis
xylitol
dehydrogenase
gene
XYL2,
and
construction
of
a
xylose-utilizing
Saccharomyces cerevisiae transformant. Curr Genet 18:493-500
75. Tantirungkij M, Nakashima N, Seki T, Yoshida T (1993) Construction of xylose-assimilating
Saccharomyces cerevisiae. J Ferment Bioeng 75:83-88
76. Ho NWY, Chen Z, Brainard A (1998) Genetically engineered Saccharomyces yeast capable
of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64:1852-1859
77. Ho NWY, Chen Z, Brainard A (1997) Genetically engineered yeast capable of effective
fermentation of xylose to ethanol. Proceedings of Tenth International Symposium on Alcohol
Fuels, Colorado Springs, CO, USA, 7-10 Nov P738.
78. Toon ST, Philippidis GP, Ho NYW et al (1997) Enhanced cofermentation of glucose and xylose
by recombinant Saccharomyces yeast strains in batch and continuous operating modes. Appl
Biochem Biotech 63-65:243-255
79. Bera AK, Sedlak M, Khan A et al (2010) Establishment of L-arabinose fermentation in
Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering. Appl Microbiol Biotech
87:1803-1811
80. Casey E, Sedlak M, Ho NWY et al (2010) Effect of acetic acid and pH on the co-fermentation
of glucose and xylose to ethanol by recombinant S. cerevisiae. FEMS Yeast Res 10:385-393
81. Athmanathan A, Sedlak M, Ho NYW et al (2011) Effect of product inhibition on xylose
fermentation to ethanol in glucose-xylose co-fermenting S. cerevisiae 424A (LNH-ST). Biol
Eng 3:111-124
82. Bera AK, Ho NYW, Khan A et al (2011) A genetic overhaul of Saccharomyces cerevisiae
424A(LNH-ST) to improve xylose fermentation. J Ind Microbiol Biotechnol 38:617-626
Search WWH ::




Custom Search