Biomedical Engineering Reference
In-Depth Information
18. Lynd
LR,
Weimer
PJ,
van
Zyl
WH
et
al
(2002)
Microbial
cellulose
utilization:
fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506-577
19. Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical
and molecular perspectives. J Ind Microbiol Biotechnol 35(5):377-391
20. Polizeli ML, Rizzatti AC, Monti R et al (2005) Xylanases from fungi: properties and
industrial applications. Appl Microbiol Biotechnol 67(5):577-591
21. Wong KK, Tan LU, Saddler JN (1988) Multiplicity of b-1, 4-xylanase in microorganisms:
functions and applications. Microbiol Rev 52(3):305-317
22. Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic
xylanases. FEMS Microbiol Rev 29(1):3-23
23. Moreira LR, Filho EX (2008) An overview of mannan structure and mannan-degrading
enzyme systems. Appl Microbiol Biotechnol 79(2):165-178
24. Fang X, Qin Y, Li X et al (2010) Progress on cellulase and enzymatic hydrolysis of
lignocellulosic biomass. China J Biotechnol 26(7):864-869
25. Baker JO, Ehrman CI, Adney WS (1998) Hydrolysis of cellulose using ternary mixtures of
purified cellulases. Appl Biochem Biotechnol 70-72:395-403
26. Levin SE, Fox JM, Clark DS et al (2011) A mechanistic model for rational design of
optimal cellulase mixtures. Biotechnol Bioeng 108(11):2561-2570
27. Zhang YH, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis
of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88(7):797-824
28. Wang L, Zhang Y, Gao P et al (2006) Changes in the structural properties and rate of
hydrolysis of cotton fibers during extended enzymatic hydrolysis. Biotechnol Bioeng
93(3):443-456
29. Wang L, Zhang Y, Gao P (2008) A novel function for the cellulose binding module of
cellobiohydrolase I. Sci China C Life Sci 51(7):620-629
30. Lehtio J, Sugiyama J, Gustavsson M et al (2003) The binding specificity and affinity
determinants of family 1 and family 3 cellulose binding modules. Proc Natl Acad Sci USA
100(2):484-489
31. Linder M, Teeri TT (1996) The cellulose-binding domain of the major cellobiohydrolase of
Trichoderma reesei exhibits true reversibility and a high exchange rate on crystalline
cellulose. Proc Natl Acad Sci USA 93(22):12251-12255
32. Wang T, Zou Y, Shi Y et al (2000) Expression and characteristic of secretary CBD CBH1
from Penicillium janthinellum in E.coli. Chin J Biochem Mol Biol 16(5):644-649
33. Zhong L, Matthews JF, Hansen PI et al (2009) Computational simulations of the
Trichoderma reesei cellobiohydrolase I acting on microcrystalline cellulose Ibeta: the
enzyme-substrate complex. Carbohydr Res 344(15):1984-1992
34. Xiao Z, Gao P, Qu Y et al (2001) Cellulose-binding domain of endoglucanase III from
Trichoderma reesei disrupting the structure of cellulose. Biotechnol Lett 23(9):711-715
35. Divne C, Stahlberg J, Teeri TT et al (1998) High-resolution crystal structures reveal how a
cellulose chain is bound in the 50 angstrom long tunnel of cellobiohydrolase I from
Trichoderma reesei. J Mol Biol 275(2):309-325
36. Varrot A, Frandsen TP, von Ossowski I et al (2003) Structural basis for ligand binding and
processivity in cellobiohydrolase Cel6A from Humicola insolens. Structure 11(7):855-864
37. Zhao X, Rignall TR, McCabe C et al (2008) Molecular simulation evidence for processive
motion of Trichoderma reesei Cel7A during cellulose depolymerization. Chem Phys Lett
460(1-3):284-288
38. Carrard G, Linder M (1999) Widely different off rates of two closely related cellulose-
binding domains from Trichoderma reesei. Eur J Biochem 262(3):637-643
39. Mattinen ML, Linder M, Teleman A et al (1997) Interaction between cellohexaose and
cellulose binding domains from Trichoderma reesei cellulases. FEBS Lett 407(3):291-296
40. Receveur V, Czjzek M, Schulein M et al (2002) Dimension, shape, and conformational
flexibility of a two domain fungal cellulase in solution probed by small angle X-ray
scattering. J Biol Chem 277(43):40887-40892
Search WWH ::




Custom Search