Biomedical Engineering Reference
In-Depth Information
8.8 References
Chuenkhum, S. and Cui, Z. (2006). The parameter conversion from the
Kedem-Katchalsky model into the two-parameter model. CryoLetters ,
27 :185-99.
Dbska, J. (1964). Charophyta-Ramienice, Flora Sodkowodna Polski [Poland's
Freshwater Flora]. PWN, Warszawa.
Disalvo, A., Siddiqi, F. A., and Ti Tien, H. (1989). Membrane transport with
emphasis on water and nonelectrolytes in experimental lipid bilayers and
biomembranes. In Water Transport in Biological Membranes , ed. G. Benga,
CRC, Boca Raton, FL, pp. 41-75.
Elmoazzen, H. Y., Elliott, J. A. W., and McGann, L. E. (2008). Osmotic trans-
port across cells in nondilute solutions. Biophysical Journal (to appear).
Elmoazzen, H. Y., Elliott, J. A. W., and McGann, L. E. (2002). The effect of
temperature on membrane hydraulic conductivity. Cryobiology, 45 :68-79.
Goldstein, D. A. and Solomon, A. K. (1961). Determination of equivalent
pore radius for red cells by osmotic pressure measurement. The Journal of
General Physiology, 44 :1-17.
Hejnowicz, Z. (1996). Aquaporin water channels in plant and animal cells.
Postepy Biologii Komorki, 23 :529-546 (in Polish).
Hertel, A. and Steudle, E. (1997). The function of water channels in Chara :
the temperature dependence of water and solute flows provides evidence
composite transport for a slippage of small organic solutes across water
channels. Planta, 202 :324-35.
Jacobs, M. H. and Stewart, D. R. (1932). A simple method for the quantita-
tive measurement of cell permeability. Journal of Cellular and Comparative
Physiology, 1 :71-82.
Kane, J.W. and Sternheim, M. M. (1988). Physics for Natural Scientists, 2 .
PWN, Warsaw.
Kargol, A. (2002). A mechanistic model of transport processes in porous mem-
branes generated by osmotic and hydrostatic pressures. Journal of Medical
Screening, 191 :61-69.
Kargol, M. (2007). Mass Transport Processes in Membranes and Their Bio-
physical Implications . Kielce: WSTKT Kielce, Poland.
 
Search WWH ::




Custom Search