Biomedical Engineering Reference
In-Depth Information
[36] Perktold, K. and Resch, M. (1990). Numerical flow studies in human
carotid artery bifurcations: basic discussion of the geometric factor in
atherogenesis. Journal of Biomedical Engineering, 12 :11-123.
[37] Perktold, K., Resch, M., and Florian, H. (1991b). Pulsatile non-Newtonian
flow characteristics in a three-dimensional human carotid bifurcation
model. Journal of Biomechanical Engineering, 113 :464-475.
[38] Khanafer, K., Bull, J. L., and Berguer, R. (2009). Fluid-structure interac-
tion of laminar and turbulent pulsatile flow within a flexible wall axisym-
metric aortic aneurysm models. European Journal of Mechanics, B/Fluids,
28 :88-102.
[39] Berguer, R., Bull, J., and Khanafer, K. (2006). Refinements in mathemat-
ical models to predict aneurysm growth and rupture. Annals of the New
York Academy of Sciences, 1085 :110-116.
[40] Khanafer, K., Bull, J. L., and Berguer, R. (2006). Turbulence significantly
increases wall pressure and shear stress in an aortic aneurysm model under
resting and exercise conditions. Annals of Vascular Surgery, 21 :67-74.
[41] Khanafer, K., Gadhoke, P., Berguer, R., and Bull, J. L. (2006). Mod-
eling pulsatile flow in aortic aneurysms: effect of non-Newtonian blood.
Biorheology, 43 :661-679.
[42] Aenis, M., Stancampiano, A. P., Wakhloo, A. K., and Lieber, B. B. (1997).
Modeling of flow in a straight stented and nonstented sidewall aneurysm
model. ASME Journal of Biomechanical Engineering, 119 :206-212.
[43] Ohta, M., Wetzel, S. G., Dantan, P., Bachelet, C., Lovblad, K. O., Yilmaz,
H., Flaud, P., and Rufenacht, D. A. (2005). Rheological changes after
stenting of a cerebral aneurysms: a finite element modeling approach.
CardioVascular and Interventional Radiology, 28 :768-772.
[44] Stuhne, G. R. and Steinman, D. A. (2004). Finite-element modeling of
the hemodynamics of stented aneurysm. ASME Journal of Biomechanical
Engineering, 126 :382-387.
[45] Shojima, M., Oshima, M., Takagi, K., Torii, R., Hayakawa, M., Katada,
K., Morita, A., and Kirino, T. (2004). Magnitude and role of wall shear
stress on cerebral aneurysm: computational fluid dynamic study of 20
middle cerebral artery aneurysms. Stroke, 35 :2500-2505.
[46] Rayz, V. L., Boussel, L., Acevedo-Bolton, G., Martin, A. G., Young, W.
L., Lawton, M. T., Higashida, R., and Saloner, D. (2008). Numerical sim-
ulations of flow in cerebral aneurysms: comparison of CFD results and
in vivo MRI measurements. Journal of Biomechanical Engineering, 130 :
1-9.
Search WWH ::




Custom Search