Biomedical Engineering Reference
In-Depth Information
Kenar H, Kocabas A, Aydinli A, Hasirci V (2008) Chemical and topographical modification of
PHBV surface to promote osteoblast alignment and confinement. J Biomed Mater Res, Part
A 85A(4):1001-1010
Khan Y, Yaszemski MJ, Mikos AG, Laurencin CT (2008) Tissue engineering of bone: material
and matrix considerations. J Bone Joint Surg Am 90(Supplement_1):36-42
Koegler WS, Griffith LG (2004) Osteoblast response to PLGA tissue engineering scaffolds with
PEO modified surface chemistries and demonstration of patterned cell response. Biomater
25(14):2819-2830
Kumagai Y, Doi Y (1992a) Enzymatic degradation and morphologies of binary blends of micro-
bial poly(3-hydroxy butyrate) with poly(caprolactone), poly(1,4-butylene adipate and
poly(vinyl acetate). Polym Degrad Stabil 36(3):241-248
Kumagai Y, Doi Y (1992b) Enzymatic degradation of binary blends of microbial poly(3-hydroxy-
butyrate) with enzymatically active polymers. Polym Degrad Stabil 37(3):253-256
Kumarasuriyar A, Jackson RA, Grondahl L, Trau M, Nurcombe V, Cool SM (2005)
Poly(hydroxybutyrate-co-hydroxyvalerate) supports in vitro osteogenesis. Tissue Eng
11(7-8):1281-1295
Langer R, Vacanti J (1993) Tissue engineering. Sci 260(5110):920-926
Lee SJ, Lim GJ, Lee JW, Atala A, Yoo JJ (2006) In vitro evaluation of a poly(lactide-co-
glycolide)-collagen composite scaffold for bone regeneration. Biomater 27(18):3466-3472
Liu H, Slamovich EB, Webster TJ (2006) Increased osteoblast functions among nanophase tita-
nia/poly(lactide-co-glycolide) composites of the highest nanometer surface roughness. J
Biomed Mater Res, Part A 78A(4):798-807
Liu X, Ma PX (2004) Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng
32(3):477-486
Lowry KJ, Hamson KR, Bear L, Peng YB, Calaluce R, Evans ML, Anglen JO, Allen WC (1997)
Polycaprolactone/glass bioabsorbable implant in a rabbit humerus fracture model. J Biomed
Mater Res 36(4):536-541
Lu HH, Cooper JJA, Manuel S, Freeman JW, Attawia MA, Ko FK, Laurencin CT (2005)
Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro opti-
mization studies. Biomater 26(23):4805-4816
Lucchesi C, Ferreira B, Duek E, Santos A, Joazeiro P (2008) Increased response of vero cells to
PHBV matrices treated by plasma. J Mater Sci Mater Med 19(2):635-643
Lutton C, Read J, Trau M (2001) Nanostructured biomaterials: a novel approach to artificial bone
implants. Aust J Chem 55:621-623
Luzier WD (1992) Materials derived from biomass/biodegradable materials. Proc Nat Acad Sci
USA 89(3):839-842
Ma PX (2004) Scaffolds for tissue fabrication. Mater Today 7(5):30-40
Marra KG, Szem JW, Kumta PN, DiMilla PA, Weiss LE (1999a) In vitro analysis of biodegrad-
able polymer blend/hydroxyapatite composites for bone tissue engineering. J Biomed Mater
Res 47(3):324-335
Marra KG, Szem JW, Kumta PN, DiMilla PA, Weiss LE (1999b) Tissue-engineered bone regen-
eration. Nat Biotech 18(9):959-963
Park JB (1979) Biomaterials: an introduction. Plenum Press, New York
Park JB, Bronzino JD (2003) Biomaterials : principles and applications. CRC Press, Boca Raton
Park JW, Doi Y, Iwata T (2004) Uniaxial drawing and mechanical properties of poly[(R)-3-hy-
droxybutyrate]/poly(l-lactic acid) blends. biomacromolecules, 5(4):1557-1566
Ratner BD (2004) Biomaterials science : an introduction to materials in medicine. Elsevier
Academic Press, UK
Renard E, Walls M, Guérin P, Langlois V (2004) Hydrolytic degradation of blends of poly-
hydroxyalkanoates and functionalized polyhydroxyalkanoates. Polym Degrad Stab
85(2):779-787
Rose FRAJ and Oreffo ROC (2002) Bone tissue engineering: hope vs hype. Biochem Bioph Res
Co 292(1):1-7
Search WWH ::




Custom Search