Biomedical Engineering Reference
In-Depth Information
cular conduit: a porcine experimental study. J Thorac Cardiovasc Surg 124 ,
1165-1175.
TURNER, N.J., KIELTY, C.M., WALKER, M.G., and CANFI ELD, A.E. (2004). A novel hyaluro-
nan-based biomaterial (Hyaff-11) as a scaffold for endothelial cells in tissue
engineered vascular grafts. Biomaterials 25 , 5955-5964.
TURNER, N.J., MURPHY, M.O., KIELTY, C.M., SHUTTLEWORTH, C.A., BLACK, R.A., HUMPHRIES,
M.J., WALKER, M.G., and CANFI ELD, A.E. (2006). Alpha2(VIII) collagen substrata
enhance endothelial cell retention under acute shear stress fl ow via an alpha-
2beta1 integrin-dependent mechanism: an in vitro and in vivo study. Circulation
114 , 820-829.
UEMATSU, M., and OKADA, M. (1996). Experimental studies on modifi ed human ureter
as an arterial substitution for reconstruction of small caliber vessels. Kobe J Med
Sci 42 , 291-306.
VAZ, C.M., VAN TUIJL, S., BOUTEN, C.V., and BAAIJENS, F. P. (2005). Design of scaffolds
for blood vessel tissue engineering using a multi-layering electrospinning tech-
nique. Acta Biomaterialia 1 , 575-582.
VINARD, E., ELOY, R., DESCOTES, J., BRUDON, J.R., GUIDICELLI, H., PATRA, P. , STREICHEN-
BERGER, R., and DAVID, M. (1991). Human vascular graft failure and frequency of
infection. J Biomed Mater Res 25 , 499-513.
VINARD, E., LESECHE, G., ANDREASSIAN, B., and COSTAGLIOLA, D. (1999). In vitro endo-
thelialization of PTFE vascular grafts: a comparison of various substrates, cell
densities, and incubation times. Ann Vasc Surg 13 , 141-150.
VOYTIK-HARBIN, S.L., BRIGHTMAN, A.O., KRAINE, M.R., WAISNER, B., and BADYLAK, S.F.
(1997). Identifi cation of extractable growth factors from small intestinal submu-
cosa. J Cell Biochem 67 , 478-491.
WALPOTH, B.H., ROGULENKO, R., TIKHVINSKAIA, E., GOGOLEWSKI, S., SCHAFFNER, T., HESS,
O.M., and ALTHAUS, U. (1998). Improvement of patency rate in heparin-coated
small synthetic vascular grafts. Circulation 98 , II319-323; discussion II324.
WANG, D.M., and TARBELL, J.M. (1995). Modeling interstitial fl ow in an artery wall
allows estimation of wall shear stress on smooth muscle cells. J Biomech Engi
117 , 358-363.
WANG, L., LI, L., SHOJAEI, F. , LEVAC, K., CERDAN, C., MENENDEZ, P. , MARTIN, T., ROULEAU,
A., and BHATIA, M. (2004). Endothelial and hematopoietic cell fate of human
embryonic stem cells originates from primitive endothelium with hemangioblastic
properties. Immunity 21 , 31-41.
WANG, Z.Z., AU, P. , CHEN, T., SHAO, Y. , DAHERON, L.M., BAI, H., ARZIGIAN, M., FUKUMURA,
D., JAIN, R.K., and SCADDEN, D.T. (2007). Endothelial cells derived from human
embryonic stem cells form durable blood vessels in vivo . Nat Biotechnol 25 ,
317-318.
WEINBERG, C.B., and BELL, E. (1986). A blood vessel model constructed from collagen
and cultured vascular cells. Science 231 , 397-400.
WERNIG, M., MEISSNER, A., CASSADY, J.P., and JAENISCH, R. (2008). c-Myc is dispensable
for direct reprogramming of mouse fi broblasts. Cell Stem Cell 2 , 10-12.
WILES, M.V., and KELLER, G. (1991). Multiple hematopoietic lineages develop from
embryonic stem (ES) cells in culture. Development (Cambridge, England) 111 ,
259-267.
WILMUT, I., SCHNIEKE, A.E., MCWHIR, J., KIND, A.J., and CAMPBELL, K.H. (1997). Viable
offspring derived from fetal and adult mammalian cells. Nature 385 , 810-813.
￿ ￿ ￿ ￿ ￿
Search WWH ::




Custom Search