Biomedical Engineering Reference
In-Depth Information
We.can.apply.the.paraxial.approximation.(Equation.2.4).to.ind.the.length. VQ :
R QC
=
+
3
2
h
R
=
QC
+
2
h
R
2
R QC VQ
=
=
2
.
Substituting.for. VQ .then.gives
(
)
n
s
n
s
n
n
1
1
+
2
2
=
2
1
R
.
Consider.what.happens.when.the.distance. s 1 .becomes.very.large,.that.is,.for.an.object.at.a.very.long.
distance..In.the.limit.that. s 1 →∞,.we.have
(
) → =
n
n
n
s
n R
2
2
2
1
2
=
s
) = '
f
2
(
R
n
n
.
2
1
Here,.the.light.comes.to.a.focus.at.a.set.distance. f ′.into.the.media.with.index. n 2 ..his.is.deined.as.the.
focal.point.within.medium.2..Since.the.light.is.coming.from.ininity,.the.light.rays.would.be.parallel.and.
the.wavefronts.would.be.plane.waves..If. s 2 →∞,.we.have
(
) → =
n
s
n
n
n R
1
1
=
2
1
s
1
) =
f
(
1
R
n
n
.
2
1
Here,.the.light.comes.to.a.focus.at.a.set.distance. f .into.the.media.with.index. n 1 ..his.is.the.focal.point.
within.medium.1.
2.5 thin Lens equation
In.most.optical.systems,.we.would.like.to.have.the.light.pass.from.one.point. s 1 .to.another.point. s 2 ,.
both.of.which.are.in.air.rather.than.inside.some.material.such.as.glass..his.is.accomplished.using.a.
thin.lens.that.has.two.curved.surfaces,.as.shown.in.Figure.2.5..Since.a.lens.is.usually.used.in.air,.we.
have.set. n 1 .=.1.
When.describing.the.object.and.image.distances,.and.the.radii.of.curvature.of.the.two.surfaces.of.the.
lens,.the.following.conventions.for.the.signs.of.the.distances.and.radii.of.curvature.are.used.(Feynman.
1966):
P
S 1
S 2
R
O
I
V Q
V' C
n 2
FIGuRE 2.5
Refraction.at.two.curved.interfaces.to.form.a.biconvex.lens.
 
Search WWH ::




Custom Search