Biomedical Engineering Reference
In-Depth Information
Aberrated
beam
Detector
Pinhole
Φ ( r , θ )
FIGuRE 10.5
Simple.sensorless.adaptive.system.consists.of.an.aberrated.input.beam,.a.focusing.lens,.and.a.pin-
hole.detector.
he.intensity.at.the.pinhole.plane.is.given.by.the.modulus.squared.of.the.Fourier.transform.of.the.
pupil.ield:
2
1
[
]
.
∫∫
.
I
( , )
ν ξ = π
P r
( , )exp
θ
ι ν
r
cos(
θ− ξ
) d d
r r
θ
(10.7)
where.ι.is.the.imaginary.unit,.(ν,ξ).are.the.polar.coordinates.in.the.pinhole.plane,.and. P ( r ,θ).is.the.pupil.
function..It.is.assumed.that.the.pupil.is.circular,.with.unit.radius.so.that. P ( r ,θ).=.0.for. r .>.1..Assuming.
that.the.intensity.of.the.input.beam.is.uniform,.we.deine. P ( r ,θ).=.exp[ιΦ( r ,θ)]..In.the.limit.of.a.point-like.
pinhole,.the.metric.(the.signal.measured.by.the.photodetector).is.proportional.to.the.on-axis.intensity,.
which.is.found.by.setting. ν .=.0.in.Equation.10.7..he.metric.takes.a.relatively.simple.form:
2
1
2
π
1
[
]
.
M
= π
exp
ιΦ θ
( , ) d d
r
r r
θ
.
(10.8)
r
θ
If.the.aberration.amplitude.is.small,.the.exponent.can.be.expanded.to.give
2
1
2
π
1
1
2
.
M
= π
1
+ ιΦ θ − Φ θ +…
( , )
r
( , )
r
2
r r
d d
θ
.
(10.9)
r
θ
Using.the.aberration.expansion.of.Equation.10.1.in.Equation.10.9.yields
2
= + ι
π
1
2
∫∫
∫∫
.
M
1
a
X r r
  d d
θ−
a a
X X r r
  d d
θ+…
.
(10.10)
i
i
i
j
i
j
π
i
i
j
where.we.have.omitted.the.explicit.dependence.of. X i .on.( r ,θ).for.notational.brevity..he.second.term.on.
the.right-hand.side.of.the.equation.can.be.set.to.zero.if.we.assume.that.the.aberration.modes. X i .have.
zero.mean.value..his.assumption.is.reasonable.in.practice.as.it.is.equivalent.to.choosing.modes.that.do.
not.contain.any.piston.component..As.piston.has.no.efect.on.the.metric.measurement,.this.assumption.
does.not.restrict.us.in.any.practical.way..he.metric.can.then.be.written.as
.
M
≈ −
1
α
a a
j .
(10.11)
i j
,
i
i
j
where.we.deine
1
∫∫
α = π
X X r r
  d d
θ
(10.12)
.
.
i j
,
i
j
 
Search WWH ::




Custom Search