Biomedical Engineering Reference
In-Depth Information
Continuous-wave 
laser/electron beam
Pulsed laser/electron 
beam
Furnace
Anneal mechanism
Solid phase
Solid phase
Liquid phase
Optimum anneal 
conditions
>850°C for best 
electrical properties
one to 5S dwell with 
substrate heating 
(laser) and raster 
scan (electron beam)
Narrow energy 
window at energies 
just sufficient to melt 
below damage layer
Decomposition
Severe at >600°C: use 
cap or other 
preventative 
measures
Surface oxidation in 
air: use inert ambient 
or vacuum
Significant 
decomposition only 
at high powers and 
pulse lengths: surface 
damage at lower 
powers
Microstructure
Always some extended 
defects
Not yet examined
Extended defect-free 
but often some 
surface damage: likely 
quenched in point 
defects
Surface topography
Featureless
Featureless (optimum 
conditions): slip and 
cracking with 
excessive thermal 
gradients
Featureless (optimum 
conditions): rough 
surface at high power
Electrical 
properties
Good activity: always 
below 10 19  cm 3  for  n
type
Limited data but good 
activity for low to 
medium dose  n -type: 
poor results for non 
optimized anneals: 
mobilities close to 
theory, where 
available
High activity (>10 19
cm 3 ) for both  n - and 
p -type: activity 
decreases on 
subsequent furnace 
annealing: cannot 
activate low-dose 
n -type: mobilities 
anomalously low
Implant 
redistribution
Diffusion broadening 
a problem with some 
dopants (e.g., Zn. S) 
at high temperatures
Few data exist: 
probably no 
redistribution
Little redistribution for 
low power just above 
threshold: dopant 
redistribution and 
“zone refining” can 
occur in melt
Substitutional 
solubility (to 
GaAs)
Never exceeds 5 × 10 19
cm —3
Not measured
Exceeds equilibrium 
value (>10 20  cm 3 ) 
not good correlation 
with electrical activity
FIGURE 5.25
Comparison of the various annealing methods for ion-implanted GaAs.
 
Search WWH ::




Custom Search