Biomedical Engineering Reference
In-Depth Information
Type of Cell
Characteristics
Diffraction 
cell
his  device  merely  difracts  an  input  beam.  he  characteristics  of  the  output 
beams are not relevant except in the cases of imaging devices. Examples include 
modelockers and simple modulators.
Beam 
modulator
his  device  turns  an  input  beam  “ON”  and  “OFF”  with  possible  intermediate 
states, but it maintains beam quality  under  all conditions  down to the “OFF” 
state. The primary examples would be an RF communications device.
Beam 
defelector
This device defelects an input beam in a controllable fashion. Beam characteris-
tics and quality are maintained under all conditions. Examples include defelec-
tors for laserwriting applications and cavity dumpers.
Phase 
modulator
This device shifts the phase of an input beam by an amount, possible variable in 
the “ON” state. One example is an acousto-optic delay line.
Focuser/
defocuser
This device focuses or defocuses a beam while maintaining other beam charac-
teristics. In effect, this device uses cylindrical acoustic waves as a lens.
Frequency 
shifter
This device shifts the frequency of an input light beam up or down while main-
taining  other  beam  characteristics.  Examples  include  an  optical  spectrum 
analyzer  and  devices  for  producing  beat  frequencies  for  optical  information 
processing.
Image 
projector
Such a device will “break up” or transmit without distortion in a controllable 
fashion. As such, it can deflect or project an optical image. An example would 
be the projection of largescreen television images.
Information 
processor
Here,  a  variable  phase  grating  generated  by  acoustic  wave  in  a  transparent 
medium  replicates  an  input  very-high-frequency  signal.  This  is  used  to  spa-
tially modulate a light beam. Thus, an input electrical signal can be processed 
by spatial correlation techniques applied to a light beam transmitted through 
the medium.
Convert 
light into 
sound
This can happen in two related ways and is the inverse of the Debye-Sears effect. 
In one case, high-energy light beams create sound waves in a transparent mate-
rial at their difference (beat) frequency. In other cases, pulsed high-energy light 
beams generate sound in a material at the pulse frequency-thermally produced 
sound.  he  sound  originates  from  thermal  expansions  or  contractions  of  the 
material resulting from deposition or of beam energy in the material.
FIGURE 3.4 (continued)
(b) Types of AO devices.
value of 1.2-2.0. If the bandwidth is read on the vertical axis, and the time delay
on the horizontal axis, the maximum time bandwidth product of the Bragg cell
can be determined. The low frequency time bandwidth product is limited by
the size of the crystal that governs the acoustic wave's transit time.
The high frequency time bandwidth product is limited by the acoustic loss
of the crystal. There are other parameters that govern the choice of materials,
and they will be introduced later.
Some of the uses of the Bragg cell are shown in Figure 3.4b [8]. We will
concentrate here on the Bragg cell receiver, especially the integrated optic
Bragg cell receiver, where the beam collimator, the Bragg cell, and the Fourier
Transform lens are formed on the same substrate. Figure 3.5 shows the basic
IO Bragg Cell receiver [9].
Search WWH ::




Custom Search