Biomedical Engineering Reference
In-Depth Information
46. Kolmakov A, Moskovits M (2004) Chemical sensing and catalysis by one-dimensional metal-
oxide nanostructures. Annu Rev Mater Res 34:151-180
47. Bondavalli P, Legagneux P, Pribat D (2009) Carbon nanotubes based transistors as gas
sensors: state of the art and critical review. Sens Actuator B-Chem 140:304-318
48. Vichchulada P, Lipscomb LD, Zhang QH, Lay MD (2009) Incorporation of single-walled
carbon nanotubes into functional sensor applications. J Nanosci Nanotechnol 9:2189-2200
49. Cho SH, Chang WS, Kim KR, Hong JW (2009) Measurement of UV absorption of single
living cell for cell manipulation using NIR femtosecond laser. Appl Surf Sci 255:4974-4978
50. Ronchi P, Terjung S, Pepperkok R (2012) At the cutting edge: applications and perspectives of
laser nanosurgery in cell biology. Biol Chem 393:235-248
51. Winkler MT, Sher MJ, Lin YT, Smith MJ, Zhang HF, Gradecak S, Mazur E (2012) Studying
femtosecond-laser hyperdoping by controlling surface morphology. J Appl Phys 111:093511
52. Watanabe W, Matsunaga S, Higashi T, Fukui K, Itoh K (2008) In vivo manipulation of
fluorescently labeled organelles in living cells by multiphoton excitation. J Biomed Opt
13:031213
53. Brugues J, Nuzzo V, Mazur E, Needleman DJ (2012) Nucleation and transport organize
microtubules in metaphase spindles. Cell 149:554-564
54. Reich U, Fadeeva E, Warnecke A, Paasche G, Muller P, Chichkov B, Stover T, Lenarz T,
Reuter G (2012) Directing neuronal cell growth on implant material
surfaces by
microstructuring. J Biomed Mater Res Part B Appl Biomater 100:940-947
55. Baumgart J, Humbert L, Boulais E, Lachaine R, Lebrun JJ, Meunier M (2012) Off-resonance
plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells.
Biomaterials 33:2345-2350
56. Bath J, Turberfield AJ (2007) DNA nanomachines. Nat Nanotechnol 2:275-284
57. Wendell D, Jing P, Geng J, Subramaniam V, Lee TJ, Montemagno C, Guo P (2009) Translo-
cation of double-stranded DNA through membrane-adapted phi29 motor protein nanopores.
Nat Nanotechnol 4:765-772
58. Baraban L, Makarov D, Streubel R, Monch I, Grimm D, Sanchez S, Schmidt OG (2012)
Catalytic Janus motors on microfluidic chip: deterministic motion for targeted cargo delivery.
ACS Nano 6:3383-3389
59. Gao W, Sattayasamitsathit S, Wang J (2012) Catalytically propelled micro-/nanomotors: how
fast can they move? Chem Rec 12:224-231
60. Solovev AA, Xi W, Gracias DH, Harazim SM, Deneke C, Sanchez S, Schmidt OG (2012) Self-
propelled nanotools. ACS Nano 6:1751-1756
61. Pumera M (2010) Electrochemically powered self-propelled electrophoretic nanosubmarines.
Nanoscale 2:1643-1649
62. Wang J, Manesh KM (2010) Motion control at the nanoscale. Small 6:338-345
63. Han SW, Nakamura C, Obataya I, Nakamura N, Miyake J (2005) A molecular delivery system
by using AFM and nanoneedle. Biosens Bioelectron 20:2120-2125
64. Obataya I, Nakamura C, Han S, Nakamura N, Miyake J (2005) Nanoscale operation of a living
cell using an atomic force microscope with a nanoneedle. Nano Lett 5:27-30
65. Chen X, Kis A, Zettl A, Bertozzi CR (2007) A cell nanoinjector based on carbon nanotubes.
Proc Natl Acad Sci USA 104:8218-8222
66. Singhal R, Orynbayeva Z, Kalyana Sundaram RV, Niu JJ, Bhattacharyya S, Vitol EA, Schrlau
MG, Papazoglou ES, Friedman G, Gogotsi Y (2011) Multifunctional carbon-nanotube cellular
endoscopes. Nat Nanotechnol 6:57-64
67. Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular
microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23:47-55
68. Orive G, Anitua E, Pedraz JL, Emerich DF (2009) Biomaterials for promoting brain protection,
repair and regeneration. Nat Rev Neurosci 10:682-692
69. Grafahrend D, Heffels KH, Beer MV, Gasteier P, Moller M, Boehm G, Dalton PD, Groll J
(2011) Degradable polyester scaffolds with controlled surface chemistry combining minimal
protein adsorption with specific bioactivation. Nat Mater 10:67-73
Search WWH ::




Custom Search