Biomedical Engineering Reference
In-Depth Information
With this geometry, SHG light generated in the specimen travels back along the laser light path, pass-
ing through the scanning system before being decoupled from the laser path. In this way, the focus of
SHG light detected by the PMT always occupies the same position (as in confocal microscopy), allowing
the use of a detector with a very small sensitive area.
In this configuration, the distance between the detector and the collection objective drastically
reduces the collection of multiple-scattered SHG photons, limiting in vivo applicability.
References
Allegra Mascaro, A. L., Sacconi, L. and Pavone, F. S. 2010. Multi-photon nanosurgery in live brain. Front.
Neuroenerg., 2: 21.
Barad, Y., Eisenberg, H., Horowitz, M. and Silberberg, Y. 1997. Nonlinear scanning laser microscopy by
third harmonic generation. Appl. Phys. Lett., 70: 922-924.
Becker, W. and Bergmann, A. Detectors for high-speed photon counting. Tutorial—Becker & Hickl GmbH.
Available at: http://www.becker-hickl.com/literature.htm.
Bewersdorf, J., Pick, R. and Hell, S. W. 1998. Multifocal multiphoton microscopy. Opt. Lett., 123: 655-657.
Both, M., Vogel, M., Friedrich, O., Von Wegner, F., Kunsting, T., Fink, R. H. A. and Uttenweiler, D. 2004.
Second harmonic imaging of intrinsic signals in muscle fiber in situ. J. Biomed. Opt., 87: 882-892.
Bouevitch, O., Lewis, A., Pinevsky, I., Wuskell, J. P. and Loew, L. M. 1993. Probing membrane potential
with non-linear optics. Biophys. J., 65: 672-679.
Boulesteix, T., Beaurepaire, E., Sauviat, M. P. and Schanne-Klein, M. C. 2004. Second-harmonic micros-
copy of unstained living cardiac myocytes: Measurements of sarcomere length with 20 nm accuracy.
Opt. Lett., 29: 2031-2033.
Buist, A. H., Muller, M., Squier, J. and Brakenhoff, G. J. 1998. Real time two photon absorption microscopy
using multi-point excitation. J. Microsc., 192: 217-226.
Bullen, A., Patel, S. S. and Saggau, P. 1997. High-speed, random-access fluorescence microscopy: I.
High-resolution optical recording with voltage-sensitive dyes and ion indicators. Biophys. J., 73:
477-491.
Campagnola, P. J., Clark, H. A., Mohler, W. A., Lewis, A. and Loew, L. M. 2001. Second harmonic imaging
microscopy of living cells. J. Biomed. Opt., 6: 277-286.
Campagnola, P. J., Wei, M. D., Lewis, A. and Loew, L. M. 1999. High-resolution nonlinear optical imaging
of live cells by second harmonic generation. Biophys. J., 77: 3341-3349.
Capitanio, M., Cicchi, R. and Pavone, F. S. 2005. Position control and optical manipulation for nanotech-
nology applications. Eur. Phys. J. B, 46: 1-8.
Chou, C. K., Chen, W. L., Fwu, P. T., Lin, S. J., Lee, H. S. and Dong, C. Y. 2008. Polarization ellipticity
compensation in polarization second-harmonic generation microscopy without specimen rotation.
J. Biomed. Opt., 13: 014005.
Cicchi, R., Kapsokalyvas, D., De Giorgi, V., Maio, V., Van Wiechen, A., Massi, D., Lotti, T. and Pavone,
F. S. 2010. Scoring of collagen organization in healthy and diseased human dermis by multiphoton
microscopy. J. Biophoton., 3: 34-43.
Cicchi, R., Sacconi, L., Jasaitis, A., O'Connor, R. P., Massi, D., Sestini, S., De Giorgi, V., Lotti, T. and Pavone,
F. S. 2008. Multidimensional custom-made non-linear microscope: From ex-vivo to in-vivo imag-
ing. Appl. Phys. B, 92: 359-365.
Cova, S., Longoni, A. and Ripamonti, G. 1982. Active-quenching and gating circuits for single-photon
avalanche photodiodes (SPADs). IEEE Trans. Nucl. Sci., NS29: 599-561.
Débarre, D., Supatto, W., Pena, A. M., Fabre, A., Tordjmann, T., Combettes, L., Schanne-Klein, M. C. and
Beaurepaire, E. 2006. Imaging lipid bodies in cells and tissues using third-harmonic generation
microscopy. Nat. Methods, 3: 47-53.
Denk, W., Strickler, J. H. and Webb, W. W. 1990. Two-photon laser scanning fluorescence microscopy.
Science, 248: 73-76.
Search WWH ::




Custom Search