Biomedical Engineering Reference
In-Depth Information
play in the initiation of atherosclerosis. Examination of the diseased vascular wall have expanded the
repertoire of imaging modalities that can be used to characterize atherosclerotic lesion initiation and
progression, as well as other diseases of the wall, including cardiomyopathy and aneurysm formation.
Application of the recent advances in in vivo nonlinear optical imaging [4] holds promise to allow live,
three-dimensional, real-time imaging of normal and pathological processes in the arterial vascular bed
in the absence of motion artifacts.
References
1. Denk, W., J. H. Strickler, and W. W. Webb. 1990. Two-photon laser scanning fluorescence micros-
copy. Science 248:73-76.
2. Gan, X. S. and M. Gu. 2000. Spatial distribution of single-photon and two-photon fluorescence light
in scattering media: Monte Carlo simulation. Appl Optics 39:1575-1579.
3. Jhan, J. W., W. T. Chang, H. C. Chen, Y. T. Lee, M. F. Wu, C. H. Chen, and I. Liau. 2008. Integrated
multiple multi-photon imaging and Raman spectroscopy for characterizing structure-constituent
correlation of tissues. Opt Express 16:16431-16441.
4. Schroeder, J. L., M. Luger-Hamer, R. Pursley, T. Pohida, C. Chefd'Hotel, P. Kellman, and R. S.
Balaban. 2010. Subcellular motion compensation for minimally invasive microscopy, in vivo evi-
dence for oxygen gradients in resting muscle. Circ Res 106:1129-U1271.
5. Helmchen, F. and D. Kleinfeld. 2008. In vivo measurements of blood flow and glial cell function with
two-photon laser-scanning microscopy. Method Enzymol 444:231-254.
6. Larson, D. R., W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W.
Webb. 2003. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo . Science
300:1434-1436.
7. Pantazis, P., J. Maloney, D. Wu, and S. E. Fraser. 2010. Second harmonic generating (SHG) nano-
probes for in vivo imaging. Proc Natl Acad Sci USA 107:14535-14540.
8. Gao, X. H., L. L. Yang, J. A. Petros, F. F. Marshal, J. W. Simons, and S. M. Nie. 2005. In vivo molecular
and cellular imaging with quantum dots. Curr Opin Biotech 16:63-72.
9. Dahan, M., S. Levi, C. Luccardini, P. Rostaing, B. Riveau, and A. Triller. 2003. Diffusion dynamics of
glycine receptors revealed by single-quantum dot tracking. Science 302:442-445.
10. Michalet, X., F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S.
Gambhir, and S. Weiss. 2005. Quantum dots for live cells, in vivo imaging, and diagnostics. Science
307:538-544.
11. Ferrara, D. E., D. Weiss, P. H. Carnell, R. P. Vito, D. Vega, X. H. Gao, S. M. Nie, and W. R. Taylor.
2006. Quantitative 3D fluorescence technique for the analysis of en face preparations of arterial
walls using quantum dot nanocrystals and two-photon excitation laser scanning microscopy. Am J
Physiol-Reg I 290:R114-R123.
12. Ma, X. D., H. Tan, T. Kipp, and A. Mews. 2010. Fluorescence enhancement, blinking suppression,
and gray states of individual semiconductor nanocrystals close to gold nanoparticles. Nano Lett
10:4166-4174.
13. Vela, J., H. Htoon, Y. F. Chen, Y. S. Park, Y. Ghosh, P. M. Goodwin, J. H. Werner, N. P. Wells, J. L. Casson,
and J. A. Hollingsworth. 2010. Effect of shell thickness and composition on blinking suppression and
the blinking mechanism in “giant” CdSe/CdS nanocrystal quantum dots. J Biophotonics 3:706-717.
14. Pelton, M., G. Smith, N. F. Scherer, and R. A. Marcus. 2007. Evidence for a diffusion-controlled mecha-
nism for fluorescence blinking of colloidal quantum dots. Proc Natl Acad Sci USA 104:14249-14254.
15. Ballou, B., B. C. Lagerholm, L. A. Ernst, M. P. Bruchez, and A. S. Waggoner. 2004. Noninvasive imag-
ing of quantum dots in mice. Bioconjugate Chem 15:79-86.
16. Hardman, R. 2006. A toxicologic review of quantum dots: Toxicity depends on physicochemical and
environmental factors. Environ Health Perspect 114:165-172.
17. Boyd, R. W. 2008. Nonlinear Optics . Elsevier.
Search WWH ::




Custom Search