Biomedical Engineering Reference
In-Depth Information
4. Thomopoulos S, Williams GR, Gimbel JA, Favata M, Soslowsky LJ (2003) Variation of
biomechanical, structural, and compositional properties along the tendon to bone insertion site.
J Orthop Res 21(3):413-419
5. Wopenka B, Kent A, Pasteris JD, Yoon Y, Thomopoulos S (2008) The tendon-to-bone
transition of the rotator cuff: a preliminary Raman spectroscopic study documenting the
gradual mineralization across
the insertion in rat
tissue samples. Appl Spectrosc
62(12):1285-1294
6. Bower AF (2009) Applied mechanics of solids [A free and regularly updated version of this
text can be found on http://www.solidmechanics.org ] . CRC Press, New York
7. Thomopoulos S, Williams GR, Soslowsky LJ (2003) Tendon to bone healing: differences in
biomechanical, structural, and compositional properties due to a range of activity levels.
J Biomech Eng 125(1):106-113
8. Williams ML (1952) Stress singularities resulting from various boundary conditions in angular
corners of plates in extension. J Appl Mech 19:526-528
9. Rivlin R (1944) The effective work of adhesion. Paint Technol 9:215-216
10. Kendall K (1971) The adhesion and surface energy of elastic solids. J Phys D: Appl Phys
4:1186
11. Kendall K (1975) Thin-film peeling-the elastic term. J Phys D: Appl Phys 8:1449
12. Wren TAL, Yerby SA, BeauprĀ“ GS, Carter DR (2001) Mechanical properties of the human
achilles tendon. Clin Biomech 16(3):245-251
13. Ashby MF (2005) Materials selection in mechanical design, vol 519. Cambridge University
Press, Cambridge, UK
14. Maganaris CN, Paul JP (1999) In vivo human tendon mechanical properties. J Physiol 521
(pt 1):307-313
15. Williams JA, Kauzlarich JJ (2004) Peeling shear and cleavage failure due to tape prestrain.
J Adhes 80(5):433-458
16. Williams JA, Kauzlarich JJ (2006) The influence of peel angle on the mechanics of peeling
flexible adherends with arbitrary load-extension characteristics. Tribol Int 38(11):951-958
17. Bogy D (1971) Two edge-bonded elastic wedges of different materials and wedge angles under
surface tractions. J Appl Mech 38:377
18. Hein V, Erdogan F (1971) Stress singularities in a two-material wedge. Int J Fract
7(3):317-330
19. Akisanya A, Fleck N (1992) Brittle fracture of adhesive joints. Int J Fract 58(2):93-114
20. Akisanya A, Fleck N (1997) Interfacial cracking from the freeedge of a long bi-material strip.
Int J Solids Struct 34(13):1645-1665
21. Klingbeil N, Beuth J (2000) On the design of debond-resistant bimaterials: part I: free-edge
singularity approach. Eng Fract Mech 66(2):93-110
22. Dundurs J (1969) Discussion: edge-bonded dissimilar orthogonal elastic wedges under normal
and shear loading. J Appl Mech 36:650
23. Noda NA, Lan X (2012) Stress intensity factors for an edge interface crack in a bonded semi-
infinite plate for arbitrary material combination. Int J Solids Struct 49(10):1241-1251
24. Klingbeil N, Beuth J (2000) On the design of debond-resistant bimaterials: part II: a compari-
son of free-edge and interface crack approaches. Eng Fract Mech 66(2):111-128
25. Suga T, Elssner G, Schmauder S (1988) Composite parameters and mechanical compatibility
of material joints. J Compos Mater 22(10):917-934
26. Wang P, Xu LR (2006) Convex interfacial joints with least stress singularities in dissimilar
materials. Mech Mater 38(11):1001-1011
27. Xu L, Sengupta S (2004) Dissimilar material joints with and without free-edge stress
singularities: part II. an integrated numerical analysis. Exp Mech 44(6):616-621
28. Xu T, Bianco P, Fisher LW, Longenecker G, Smith E, Goldstein S, Bonadio J, Boskey A,
Heegaard AM, Sommer B, Satomura K, Dominguez P, Zhao C, Kulkarni AB, Robey PG,
Young MF (1998) Targeted disruption of the biglycan gene leads to an osteoporosis-like
phenotype in mice. Nat Genet 20(1):78-82
Search WWH ::




Custom Search