Biomedical Engineering Reference
In-Depth Information
125. Hannafin JA, Attia EA, Henshaw R, Warren RF, Bhargava MA (2006) Effect of cyclic strain
and plating matrix on cell proliferation and integrin expression by ligament fibroblasts.
J Orthop Res 24:149-158
126. Cukierman E (2001) Taking cell-matrix adhesions to the third dimension. Science 294
(5547):1708-1712
127. Brenhardt HA, Cosgriff-Hernandez EM (2009) The role of mechanical loading in ligament
tissue engineering. Tissue Eng Part B Rev 15(4):467-475
128. Banes AJ, Qi J, Anderson DS, Maloney M, Sumanasinghe R (2009) Tissue train culture
system. Culturing cells in a mechanically active environment. Hillsborough Business Center,
Hillsborough, NC
129. Garvin J, Qi J, Maloney M, Banes AJ (2003) Novel system for engineering bioartificial
tendons and application of mechanical load. Tissue Eng 9:967-979
130. Park SA, Kim IA, Lee YJ, Shin JW, Kim CR, Kim JK, Yang YI (2006) Biological responses
of ligament fibroblasts and gene expression profiling on micropatterned silicone substrates
subjected to mechanical stimuli. J Biosci Bioeng 102(5):402-412
131. Doroski DM, Levenston ME, Temenoff JS (2010) Cyclic tensile culture promotes fibroblastic
differentiation of marrow stromal cells encapsulated in poly(ethylene glycol)-based
hydrogels. Tissue Eng Part A 16(11):3457-3466
132. Altman GH, Horan RL, Martin I, Farhadi J, Stark PRH, Volloch V, Richmond JC, Vunjak-
Novakovic G, Kaplan DL (2001) Cell differentiation by mechanical stress. FASEB J 15
(14):270-272
133. Benjamin M, McGonagle D (2009) Entheses: tendon and ligament attachment sites. Scand
J Med Sci Sports 19(4):520-527
134. Sharma P, Maffulli N (2005) Basic biology of tendon injury and healing. Surgeon
3(5):309-316
135. Jiang J, Nicoll SB, Lu H (2003) Effects of osteoblast and chondrocyte co-culture on
chondrogenic and osteoblastic phenotype in vitro . In: Transactions of the 49th annual
meeting of the Orthopaedic Research Society New Orleans, LA
136. Wang INE, Shan J, Choi R, Oh S, Kepler CK, Chen FH, Lu HH (2007) Role of osteoblast-
fibroblast interactions in the formation of the ligament-to-bone interface. J Orthop Res 25
(12):1609-1620
137. Moffat K, Wang I, Rodeo S, Lu H (2009) Orthopedic interface tissue engineering for the
biological fixation of soft tissue grafts. Clin Sports Med 28(1):157-176
138. Spalazzi JP, Doty SB, Moffat KL, Levine WN, Lu H (2006) Development of controlled
matrix heterogeneity on a triphasic scaffold for orthopedic interface tissue engineering.
Tissue Eng 12(12):3497-3508
139. Spalazzi JP, Dagher E, Doty SB, Guo XE, Rodeo SA, Lu HH (2008) In vivo evaluation of a
multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone
integration. J Biomed Mater Res A 86A(1):1-12
140. Phillips JE, Burns KL, Le Doux JM, Guldberg RE, Garcia AJ (2008) Engineering graded
tissue interfaces. Proc Natl Acad Sci 105(34):12170-12175
141. Chen CH, Liu HW, Tsai CL, Yu CM, Lin IH, Hsiue GH (2008) Photoencapsulation of bone
morphogenetic protein-2 and periosteal progenitor cells improve tendon graft healing in a
bone tunnel. Am J Sports Med 36(3):461-473
142. Martinek V, Latterman C, Usas A, Abramowitch S, Woo SLY, Fu FH, Huard J (2002)
Enhancement of tendon-bone integration of anterior cruciate ligament grafts with bone
morphogenetic protein-2 gene transfer-a histological and biomechanical study. J Bone
Joint Surg Am 84A(7):1123-1131
143. Rodeo SA, Suzuki K, Deng XH, Wozney J, Warren RF (1999) Use of recombinant human
bone morphogenetic protein-2 to enhance tendon healing in a bone tunnel. Am J Sports Med
27(4):476-488
Search WWH ::




Custom Search