Biomedical Engineering Reference
In-Depth Information
81. Doube M, Firth EC, Boyde A, Bushby AJ (2010) Combined nanoindentation testing and
scanning electron microscopy of bone and articular calcified cartilage in an equine fracture
predilection site. Eur Cell Mater 19:242-251
82. Choi K, Kuhn JL, Ciarelli MJ, Goldstein SA (1990) The elastic moduli of human
subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone
modulus. J Biomech 23(11):1103-1113
83. Brown TD, Vrahas MS (1984) The apparent elastic modulus of the juxtarticular subchondral
bone of the femoral head. J Orthop Res 2(1):32-38
84. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis.
Biomaterials 26(27):5474-5491
85. GrimmMJ, Williams JL (1997) Measurements of permeability in human calcaneal trabecular
bone. J Biomech 30(7):743-745
86. Raudenbush D, Sumner DR, Panchal PM, Muehleman C (2003) Subchondral thickness does
not vary with cartilage degeneration on the metatarsal. J Am Podiatr Med Assoc 93
(2):104-110
87. Sniekers YH, Intema F, Lafeber FP, van Osch GJ, van Leeuwen JP, Weinans H, Mastbergen
SC (2008) A role for subchondral bone changes in the process of osteoarthritis; a micro-CT
study of two canine models. BMC Musculoskelet Disord 9:20
88. Duchemin L, Bousson V, Raossanaly C, Bergot C, Laredo JD, Skalli W, Mitton D (2008)
Prediction of mechanical properties of cortical bone by quantitative computed tomography.
Med Eng Phys 30(3):321-328
89. Ferguson VL, Olesiak SE (2011) Nanoindentation of bone. In: Oyen ML (ed) Handbook of
nanoindenation with biological applications. Pan Stanford, Singapore, pp 185-238
90. Pidaparti RM, Vogt A (2002) Experimental investigation of Poisson's ratio as a damage
parameter for bone fatigue. J Biomed Mater Res 59(2):282-287
91. Ochoa JA, Hillberry BM (1992) Permeability of bovine cancellous bone. Trans Orthop Res
Soc 17:163
92. Basillais A, Bensamoun S, Chappard C, Brunet-Imbault B, Lemineur G, Ilharreborde B, Ho
Ba Tho MC, Benhamou CL (2007) Three-dimensional characterization of cortical bone
microstructure by microcomputed tomography: validation with ultrasonic and microscopic
measurements. J Orthop Sci 12(2):141-148
93. Iatridis JC, Setton LA, Foster RJ, Rawlins BA, Weidenbaum M, Mow VC (1998) Degenera-
tion affects the anisotropic and nonlinear behaviors of human anulus fibrosus in compression.
J Biomech 31(6):535-544
94. Panagiotacopulos ND, Pope MH, Krag MH, Bloch R (1987) A mechanical model for the
human intervertebral disc. J Biomech 20(9):839-850
95. Antoniou J, Goudsouzian NM, Heathfield TF, Winterbottom N, Steffen T, Poole AR, Aebi M,
Alini M (1996) The human lumbar endplate. Evidence of changes in biosynthesis and
denaturation of the extracellular matrix with growth, maturation, aging, and degeneration.
Spine 21(10):1153-1161
96. Acaroglu ER, Iatridis JC, Setton LA, Foster RJ, Mow VC, Weidenbaum M (1995) Degener-
ation and aging affect
the tensile behavior of human lumbar anulus fibrosus. Spine
20(24):2690-2701
97. Elliott DM, Setton LA (2001) Anisotropic and inhomogeneous tensile behavior of the human
annulus fibrosus: experimental measurement and material model predictions. J Biomech Eng
123(3):256-263
98. Boyde A, Firth EC (2004) Articular calcified cartilage canals in the third metacarpal bone of
2-year-old thoroughbred racehorses. J Anat 205(6):491-500
99. Armstrong CG, Mow VC (1982) Variations in the intrinsic mechanical properties of human
articular cartilage with age, degeneration, and water content. J Bone Joint Surg Am
64(1):88-94
100. MacLean JJ, Owen JP, Iatridis JC (2007) Role of endplates in contributing to compression
behaviors of motion segments and intervertebral discs. J Biomech 40(1):55-63
Search WWH ::




Custom Search