Biomedical Engineering Reference
In-Depth Information
2G I G I þ I G I ¼ 2 X
3
X
3
M i G M j þ M j G M i
i ¼ 1
j ¼ 1
Þ I ¼ X
X
Þ I ¼ X
3
3
3
tr ð I ¼ trI G
ð
ð
trM i G
Þ M j ;
ð
trM i G
ð
trM i G
Þ M j
i ¼ 1
j ¼ 1
j ¼ 1
Þ M i ¼ X
3
M i ; M i G M i ¼ trM i G
tr ð M i ¼ trI G
ð
trM j G
ð
Þ M i
j ¼ 1
M i G ¼ M i G I ¼ X
M i G M j ; G M i ¼ I G M i ¼ X
3
3
M j G M i
j ¼ 1
j ¼ 1
ð 3 : 280 Þ
whereby ( 3.279 ) can be transformed in the following form with nine independent
material coefficients u i
P II ¼ u 1 trM 1 G þ u 2 trM 2 G þ u 3 trM 3 ð Þ M 1
þ u 2 trM 1 G þ u 4 trM 2 G þ u 5 trM 3 G
ð
Þ M 2
þ u 3 trM 1 G þ u 5 trM 2 G þ u 6 trM 3 G
ð
Þ M 3
þ u 7 M 1 G M 2 þ M 2 G M 1
ð
Þþ u 8 M 1 G M 3 þ M 3 G M 1
ð
Þ
þ u 9 M 2 G M 3 þ M 3 G M 2
ð
Þ:
ð 3 : 281 Þ
The material equation ( 3.281 ) differs from the form presented in Boehler (1975,
1979) by the latter three terms in parentheses, which are identified by M i G þ
G M i (i = 1, 2, 3). They can, however, be transformed into each other employing
( 3.280 ) 4 -( 3.280 ) 7 .
For transversal isotropic materials, the material tensor ( 3.277 ) converts to the
following fourth order tensor function of the single direction tensor M using
( 3.224 ) 2
þ l 3 IM þ MI
ð 4 Þ
ð 4 Þ
ð 4 Þ
C
: ¼ l 1 II þ l 2
I 1
þ I 2
ð
Þþ l 4 MM
ð 3 : 282 Þ
M :
ð 6 Þ
ð 6 Þ
ð 6 Þ
ð 6 Þ
þ l 5
I 2
þ I 3
þ I 11
þ I 12
In ( 3.282 ), the underlined term represents the particular case of isotropy.
Substituting ( 3.282 )in( 3.276 ) leads to the second P IOLA -K IRCHHOFF stress tensor
with five independent material coefficients u i (the isotropic part is underlined)
I
P II ¼ u 1 trG þ u 2 trM G
ð 3 : 283 Þ
þ u 2 trG þ u 3 trM G
ð
Þ M þ u 4 G þ u 5 M G þ G M
ð
Þ:
Search WWH ::




Custom Search