Biomedical Engineering Reference
In-Depth Information
Substituting ( 3.271 )in( 3.259 ) leads to the coupled form (which could have
been obtained alternatively by using ( 3.99 ) and substituting ( 3.191 )in( 3.208 ) and
differentiation with respect to k i analogue to ( 3.253 ) 1 )
"
!
#
s ¼ 2 X
X
3 X
3
N
3
l k
a k
k a k i 1
þ k
k a k
j
D k JJ ð Þ 2k 1
n i n i
i ¼ 1
k ¼ 1
j ¼ 1
"
!
#
ð 3 : 272 Þ
2 X
3
X
N
X
3
l k
k a k i 1
3
þ k
a k J a 3
k a k
j
D k JJ ð Þ 2k 1
n i n i :
i ¼ 1
k ¼ 1
j ¼ 1
Regarding ( 3.272 ), the initial shear and bulk modulus l 0 and K 0 as well as the
relations between P OISSON ' S ratio m and l 0 and K 0 and D 1 are given by (Böl and
Reese 2008)
l 0 ¼ : X
N
m ¼ 3K 0 = l 0 2
6K 0 = l 0 þ 2
D 1 ¼ l 0
1 2m
1 þ m :
K 0 ¼ 2D 1
;
l i ;
;
ð 3 : 273 Þ
1
i ¼ 1
Highly Compressible Materials. With regard to ( 3.99 ), ( 3.209 ) and ( 3.253 ) 1 ,
the following final constitutive equation for the K IRCHHOFF stress tensor for highly
compressible hyperelastic materials in terms of the principal stretch is obtained
(Silber and Steinwender 2005)
n i n i :
s ¼ 2 X
X
3
N
l k
a k
k a k i J a k b k
ð 3 : 274 Þ
i ¼ 1
k ¼ 1
Regarding ( 3.274 ), the initial shear and bulk modulus l 0 and K 0 as well as the
relations between P OISSON ' S ratio m and the parameters b i denote
l 0 : ¼ X
N
K 0 : ¼ P i ¼ 1 2 ð 3 þ b i Þ l i ;
m i ¼ b i
1 þ 2b i
b i ¼ m i
;
l i ;
: ð 3 : 275 Þ
1 2m i
i ¼ 1
For the particular case b i = b = const (i = 1, 2,…., N), m is the classical
P OISSON ' S ratio.
Anisotropic
Materials
-
Polynomial
Representation.
With
help
of
the
G ÂTEAUX variation applied on ( 3.216 )
g e ¼ 0 ¼ !
T Z ;
dw G ¼ dw G þ eZ ; K 1 ; K 2 ; :::: K N
f
½
ð
Þ
= de
½
ow G ; K 1 ; K 2 ; :::: K N
ð
Þ= oG
the second P IOLA -K IRCHHOFF stress tensor of tensor-linear materials with arbitrary
anisotropic properties can be obtained (Silber 1988):
P II ¼ o w G ; K 1 ; K 2 ; :::: K N
ð
Þ
ð 4 Þ
¼ C
G
ð 3 : 276 Þ
oG
Search WWH ::




Custom Search