Biomedical Engineering Reference
In-Depth Information
c ¼ 0 ; k 1 ¼ 1 ; k 2 ¼ 1
c ¼ 0 ; k 1 ¼ 1 ; k 2 ¼ 1
c ¼ 0 ; k 1 ¼ 1 ; k 2 ¼ 1
oc X
3
2 w
oc 2
l 0 ¼ o P I 21
¼ o
o w
ok i
o k i
oc
¼ o
: ð 3 : 425 Þ
oc
i ¼ 1
In conjunction with ( 3.421 ) the following derivatives arise
2 ; o 2 k 1
oc 2 j c ¼ 0 ¼ o 2 k 2
oc j c ¼ 0 ¼ o 2 J
o k 1
oc j c ¼ 0 ¼ o k 2
oc j c ¼ 0 ¼ 1
oc 2 j c ¼ 0 ¼ 1
4 ; oJ
oc 2 j c ¼ 0 ¼ 0 :
ð 3 : 426 Þ
Considering the O GDEN -H ILL model ( 3.209 ) together with ( 3.421 ), initial tan-
gent shear modulus l 0 thus derives to
oc 2 j c ¼ 0 ; k 1 ¼ k 2 ¼ 1 ¼ X
N
2 w
¼ o
l 0
Ogden Hill
l j :
ð 3 : 427 Þ
j ¼ 1
In the same manner, for the O GDEN model for slightly compressible materials,
l 0 is found identical to ( 3.427 )
oc 2 j c ¼ 0 ; k 1 ¼ k 2 ¼ 1 ¼ X
2 w
N
¼ o
l 0
Ogden
l j :
ð 3 : 428 Þ
j ¼ 1
Volumetric Deformation: The initial tangent bulk modulus K 0 at infinitesimal
strains can be related to the material constants of the O GDEN -H ILL model. The bulk
modulus is defined as (Ryder 2007)
K 0 : ¼ V o p
oV
p ¼ o w
oJ
with
ð 3 : 429 Þ
where p represents the volumetric stress and hydrostatic pressure (see ( 3.258 ) and
( 3.264 )), respectively. Since the principal stretches k j are identical under volu-
metric deformation, the volume ratio (in the case of homogeneous deformation)
becomes J ¼ VV 0 ¼ k 1 k 2 k 3 ¼ k v . The initial bulk modulus thus derives using
the derivative of the first P IOLA -K IRCHHOFF stress measure with respect to J with
J ! 1 to account for the initial stress-free state to
"
*
+
#
X
N
2 w
oJ 2 j J ¼ 1 ¼ J
¼ J o
dJ 2
d
l j
a j
J a j = 3 J a j b j
K 0
Ogden Hill
j J ¼ 1
J
j ¼ 1
:
¼ 2 X
N
1
3 þ b j
l j
ð 3 : 430 Þ
j ¼ 1
Similarly,
for
the
Ogden
model
for
slightly
compressible
materials
the
following expression for K 0 is obtained
Search WWH ::




Custom Search