Biomedical Engineering Reference
In-Depth Information
150. van Oers, R.F.M., Ruimerman, R., Tanck, E., Hilbers, P.A.J., Huiskes, R.: A unified theory
for osteonal and hemi-osteonal remodeling. Bone 42, 250-259 (2008)
151. Verborgt, O., Tatton, N.A., Majeska, R.J., Schaffler, M.B: Spatial distribution of bax and
bcl-2 in osteocytes after bone fatigue: complementary roles in bone remodeling regulation?.
J. Bone Miner. Res. 17, 907-914 (2002)
152. Wang, L., Cowin, S.C., Weinbaum, S., Fritton, S.P: Modeling tracer transport in an osteon
under cyclic loading. Ann. Biomed. Eng. 28, 1200-1209 (2000)
153. Wang, L., Fritton, S.P., Cowin, S.C., Weinbaum, S.: Fluid pressure relaxation depends upon
osteonal microstructure: modeling an oscillatory bending experiment. J. Biomech. 32, 663-
672 (1999)
154. Wang, L., Fritton, S.P., Weinbaum, S., Cowin, S.C: On bone adaptation due to venous
stasis. J. Biomech. 36, 1439-1451 (2003)
155. Wang, L., Wang, Y., Han, H., Henderson, S.C., Majeska, R.J., Weinbaum, S., Scaffler, M.B:
In situ measurement of solute transport in the bone lacunar-canalicular system. Proc. Natl
Acad. Sci. U.S.A. 102, 11911-11916 (2005)
156. Wang, Y., McNamara, L.M., Schaffler, M.B., Weinbaum, S.: A model for the role of
integrins in flow induced mechanotransduction in osteocytes. Proc. Natl Acad. Sci. U.S.A.
104, 15941-15946 (2007)
157. Webster, D., Müller, R.: In silico models of bone remodeling from macro to nano-from
organ to cell. WIREs Syst. Biol. Med. 3, 241-251 (2011)
158. Weinbaum, S., Cowin, S.C., Zeng, Y.: A model for the excitation of osteocytes by
mechanical loading-induced bone fluid shear stresses. J. Biomech. 27, 339-360 (1994)
159. Weinbaum, S., Duan, Y., Thi, M., You, L.: An integrative review of mechanotransduction in
endothelial, epithelial (renal) and dendritic cells (osteocytes). Cell Molec. Bioeng. 4, 510-
537 (2011)
160. Westbroek, I., Ajubi, N.E., Ablas, M.J., Semeins, C.M., Klein-Nulend, J., Burger, E.H.,
Nijweide, P.J: Differential stimulation of prostaglandin g/h synthase-2 in osteocytes and
other osteogenic cells by pulsating fluid flow. Biochem. Biophys. Res. Commun. 268, 414-
419 (2000)
161. Williams, J.L., Iannotti, J.P., Ham, A., Bleuit, J., Chen, J.H: Effects of fluid shear stress on
bone cells. Biorheology 31, 163-170 (1994)
162. Wolff, J.: Das Gesetz der Transformation der Knochen. Hirschwald, Berlin (1892)
163. Yamashita, K., Oikawa, N., Umegaki, T.: Acceleration and deceleration of bone-like crystal
growth on ceramic hydroxyapatite by electric poling. Chem. Mater. 8, 2697-2700 (1996)
164. Yasuda, I.: Piezoelectricity of living bone. J. Kyoto Pref. Univ. Med. 53, 2019-2024 (1964)
165. You, L., Cowin, S.C., Schaffler, M.B., Weinbaum, S.: A model for strain amplification in
the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix. J. Biomech. 34,
1375-1386 (2001)
166. You, L.D., Weinbaum, S., Cowin, S.C., Schaffler, M.B: Ultrastructure of the osteocyte
process and its pericellular matrix. Anat. Rec. 278, 505-513 (2004)
167. Zhang, D., Weinbaum, S., Cowin S., C.: On the calculation of bone pore water pressure due
to mechanical loading. Int. J. Sol. Struct. 35, 4981-4997 (1998)
168. Zhang, D., Weinbaum, S., Cowin S., C.: Estimates of the peak pressures in bone pore water.
J. Biomech. Eng. 120, 697-703 (1998)
169. Zhou, X., Novotny, J., Wang, L.: Modeling fluorescence recovery after photobleaching in
loaded bone: potential applications in measuring fluid and solute transport in the osteocytic
lacunar-canalicular system. Ann. Biomed. Eng. 36, 1961-1977 (2008)
170. Zhou, X., Novotny, J.E., Wang, L.: Anatomic variations of the lacunar-canalicular system
influence solute transport in bone. Bone 45, 704-710 (2009)
Search WWH ::




Custom Search