Biomedical Engineering Reference
In-Depth Information
126. Qing, H., Bonewald, L.F: Osteocyte remodeling of the perilacunar/canalicular matrix. Int.
J. Oral Sci. 1, 59-65 (2009)
127. K.M. Reich and J.A. Frangos. Effect of flow on prostaglandin e2 and inositol triphosphate
levels in osteoblasts. Am. J. Physiol., 261: C428-432, 1991.
128. Reich, K.M., Frangos, J.A.: Protein kinase c mediates flow-induced prostaglandin e2
production in osteoblasts. Calcif. Tissue Int. 52, 62-66 (1993)
129. Reilly, G.C., Knapp, H.F., Stemmer, A., Niederer, P., Knothe Tate, M.L: Investigation of
the morphology of the lacunocanalicular system of cortical bone using atomic force
microscopy. Ann. Biomed. Eng. 29, 1074-1081 (2001)
130. Remaggi, F., Cane, V., Palumbo, C., Ferretti, M.: Histomorphometric study on the osteocyte
lacuno-canalicular network in animals of different species. I. Woven-fibered and parallel-
fibered bones. Ital. J. Anat. Embryol. 103, 145-155 (1998)
131. RĂ©mond, A., Naili, S., Lemaire, T.: Interstitial fluid flow in the osteon with spatial gradients
of mechanical properties: a finite element study. Biomech. Model. Mechanobiol. 7, 487-495
(2008)
132. Rohan, E., Naili, S., Cimrman, R., Lemaire, T.: Multiscale modelling of a uid saturated
medium with double porosity: relevance to the compact bone. J. Mech. Phys. Sol. 60, 857-
881 (2012)
133. Rubin, C.T: Skeletal strain and the functional significance of bone architecture. Calcif.
Tissue Int. 36, S11-S18 (1984)
134. Rubin, C.T., Lanyon, L.E: Limb mechanics as a function of speed and gait: a study of
functional strains in the radius and tibia of horse and dog. J. Exp. Biol. 101, 187-211 (1982)
135. Rubin, C.T., Lanyon, L.E: Regulation of bone formation by applied dynamic loads. J. Bone
Joint Surg. Am. 66, 397-402 (1984)
136. Rubin, C.T., Lanyon, L.E: Regulation of bone mass by mechanical strain magnitude. Calcif.
Tissue Int. 37, 411-417 (1985)
137. Ruff, C., Holt, B., Trinkaus, E.: Who's afraid of the big bad wolff?: ''wolff's law'' and bone
functional adaptation. Am. J. Phys. Anthropol. 129, 484-498 (2006)
138. Salzstein, R.A., Pollack, S.R: Electromechanical potentials in cortical bone-ii: experimental
analysis. J. Biomech. 20, 271-280 (1987)
139. Salzstein, R.A., Pollack, S.R., Mak, A.F.T., Petrov, N.: Electromechanical potentials in
cortical bone. I: a continuum approach. J. Biomech. 20, 261-270 (1987)
140. Schaffer, M.B., Choi, K., Milgrom, C.: Aging and matrix microdamage accumulation in
human compact bone. Bone 17, 521-525 (1995)
141. Schimdt, S.M., McCready, M.J., Ostafin, A.E: Effect of oscillationg fluid shear on solute
transport in cortical bone. J. Biomech. 28, 2337-2343 (2005)
142. Sikavitsas, V.I., Temenoff, J.S., Mikos, A.G: Biomaterials and bone mechanotransduction.
Biomaterials 22, 2581-2593 (2001)
143. Skerry, T.M., Bitenski, L., Chayen, J., Lanyon, L.E: Early strain-related changes in enzyme
activity in osteocytes following bone loading in vivo. J. Bone Miner. Res. 4, 783-788
(1989)
144. Smit, T.H., Huyghe, J.M., Cowin, S.C: Estimation of the poroelastic parameters of cortical
bone. J. Biomech. 35, 829-835 (2002)
145. Spencer, H.: First Principles. Williams and Norgate, 2nd edn, London (1867)
146. Sposito, G.: The Surface Chemistry of Soils. Oxford University Press, Oxford (1981)
147. Tami, A.E., Schaffler, M.B., Knothe Tate, M.L: Probing the tissue to subcellular level
structure underlying bone's molecular sieving function. Biorheology 40, 577-590 (2003)
148. Tatsumi, S., Ishii, K., Amizuka, N., Li, M., Kobayashi, T., Kohno, K., Ito, M., Takeshita, S.,
Ikeda,
K.:
Targeted
ablation
of
osteocytes
induces
osteoporosis
with
defective
mechanotransduction. Cell Metab. 5, 464-475 (2007)
149. Turner, C.H., Yoshikawa, T., Forwood, M.R., Sun, T.C., Burr, D.B: High frequency
components of bone strain in dogs measured during various activities. J. Biomech. 28(1),
39-44 (1995)
Search WWH ::




Custom Search