Biomedical Engineering Reference
In-Depth Information
36. Frost, H.M: From wolff's law to the utah paradigm: insights about bone physiology and its
clinical applications. Anat. Rec. 262, 398-419 (2001)
37. Fukada, E., Yasuda, I.: On the piezoelectric effect of bone. J. Phys. Soc. Jpn 12, 1158-1162
(1957)
38. Gailani, G., Benalla, M., Mahamud, R., Cowin, S.C., Cardoso, L.: Experimental
determination of the permeability in the lacunar-canalicular porosity of bone. J. Biomech.
Eng. 131((10), 101007 (2009)
39. Gailani, G., Cowin, S.: Ramp loading in Russian doll poroelasticity. J. Mech. Phys. Sol. 59,
103-120 (2011)
40. Galley, S.A., Michalek, D.J., Donahue, S.W: A fatigue microcrack alters fluid velocities in a
computational model of interstitial flow in cortical bone. J. Biomech. 39, 2026-2033 (2006)
41. Galli, M., Oyen, M.L: Fast identification of poroelastic parameters from indentation tests.
Comput. Model. Eng. Sci. 48, 241-269 (2009)
42. Gardinier, J.D., Townend, C.W., Jen, K.-P., Wu, Q., Duncan, R.L., Wang, L.: In situ
permeability measurement of the mammalian lacunar-canalicular system. Bone 46, 1075-
1081 (2010)
43. Goulet, G., Coombe, D., Martinuzzi, R., Zernicke, R.: Poroelastic evaluation of fluid
movement through the lacunocanalicular system. Ann. biomedical Engineering 37, 1390-
1402 (2009)
44. Gururaja, S., Kim, H., Swan, C., Brand, R., Lakes, R.: Modeling deformation-induced fluid
flow in cortical bone's canalicular-lacunar system. Ann. Biomed. Eng. 33, 7-25 (2005)
45. Han, J., Fu, J., Schoch, R.B: Molecular sieving using nanofilters: past, present and future.
Lab Chip 8, 23-33 (2008)
46. Han, Y., Cowin, S.C., Schaffler, M.B., Weinbaum, S.: Mechanotransduction and strain
amplification in osteocyte cell processes. Proc. Natl. Acad. Sci. U.S.A. 101, 16689-16694
(2004)
47. Harding, I.S., Rashid, N., Hing, K.A: Surface charge and the effect of excess calcium ions
on the hydroxyapatite surface. Biomaterials 26, 6818-6826 (2005)
48. Hazenberg, J.G., Freeley, M., Foran, E., Lee, T.C., Taylor, D.: Microdamage: a cell
transducing mechanism based on ruptured osteocyte processes. J. Biomech. 39, 2096-2103
(2006)
49. Hert, J., Liskova, M., Landa, J.: Reaction of bone to mechanical stimuli. 1. Continuous and
intermittent loading of tibia in rabbit. Folia Morphol. 19, 290-300 (1971)
50. Hilfiker, A., Kasper, C., Hass, R., Haverich, A.: Mesenchymal stem cells and progenitor
cells in connective tissue engineering and regenerative medicine: is there a future for
transplantation?. Langenbecks Arch. Surg. 396, 489-497 (2011)
51. Hill, P.A: Bone remodelling. Brit. J. Orthodont 25, 101-107 (1998)
52. Hunter, R.J: Zeta Potential in Colloid Science: Principles and Applications. Academic
Press, London (1981)
53. Israelachvili, J.N: Intermolecular and Surface Forces, 3rd edn. Academic Press, New York
(2011)
54. Johnson, D.L., McAllister, T.N., Frangos, J.A: Fluid flow stimulates rapid and continuous
release of nitric oxide in osteoblasts. Am. J. Physiol. Endoc. Metob. 271, E205-E208 (1996)
55. Johnson, M.W., Chakkalakal, D.A., Harper, R.A., Katz, J.L., Rouhana, S.W: Fluid flow in
bone in vitro. J. Biomech. 15, 881-885 (1982)
56. Kaiser, J., Lemaire, T., Naili, S., Komarova, S.V., Sansalone, V.: Calcium fluxes within
cortical bone fluid may affect osteocyte mechanosensitivity. Comput. Meth. Biomech.
Biomed. Eng. 14, S141-S142 (2011)
57. Kaiser, J., Lemaire, T., Naili, S., Sansalone, V.: Multiscale modelling of fluid flow in
charged porous media including cationic exchanges: application to bone tissues. C.R.
Mecanique 337, 768-775 (2009)
58. Kaiser, J., Lemaire, T., Naili, S., Sansalone, V., Komarova, S.V.: Do calcium fluxes within
cortical bone affect osteocyte mechanosensitivity? J. Theoret. Biol. 303, 75-86 (2012a)
Search WWH ::




Custom Search