Biomedical Engineering Reference
In-Depth Information
42. Xue, C., Wyckoff, J., Liang, F., Sidani, M., Violini, S., Tsai, K.L., Zhang, Z.Y., Sahai, E.,
Condeelis, J., Segall, J.E.: Epidermal growth factor receptor overexpression results in
increased
tumor
cell
motility
in
vivo
coordinately
with
enhanced
intravasation
and
metastasis. Cancer Res. 66(1), 192-197 (2006)
43. Wang, Z., Birch, C.M., Sagotsky, J., Deisboeck, T.S.: Cross-scale, cross-pathway evaluation
using an agent-based non-small cell lung cancer model. Bioinformatics 25, 2389-2396
(Oxford, England) (2009)
44. Ramis-Conde, I., Drasdo, D.: From genotypes to phenotypes: classification of the tumour
profiles for different variants of the cadherin adhesion pathway. Phys. Biol. 9(3), 036008
(2012). doi: 10.1088/1478-3975/9/3/036008
45. Conacci-Sorrell, M., Zhurinsky, J., Ben-Ze'ev, A.: The cadherin-catenin adhesion system in
signaling and cancer. J. Clin. Investig. 109(8), 987-991 (2002). doi: 10.1172/JCI15429
46. Foty, R.A., Steinberg, M.S.: Cadherin-mediated cell-cell adhesion and tissue segregation in
relation to malignancy. Int. J. Dev. Biol. 48(5-6), 397-409 (2004). doi: 10.1387/ijdb.041810rf
47. Ramis-Conde, I., Chaplain, M.A., Anderson, A.R., Drasdo, D.: Multi-scale modelling of
cancer cell intravasation: the role of cadherins in metastasis. Phys. Biol. 6(1), 16008 (2009)
48. Ramis-Conde, I., Drasdo, D., Anderson, A.R., Chaplain, M.A.: Modeling the influence of the
E-cadherin-beta-catenin pathway in cancer cell invasion: a multiscale approach. Biophys. J.
95(1), 155-165 (2008)
49. Christiansen, J.J., Rajasekaran, A.K.: Reassessing epithelial to mesenchymal transition as a
prerequisite for carcinoma invasion and metastasis. Cancer Res. 66(17), 8319-8326 (2006).
10.1158/0008-5472.CAN-06-0410, 66/17/8319 [pii]
50. Kemler, R., Hierholzer, A., Kanzler, B., Kuppig, S., Hansen, K., Taketo, M.M., de Vries, W.N.,
Knowles, B.B., Solter, D.: Stabilization of beta-catenin in the mouse zygote leads to premature
epithelial-mesenchymal transition in the epiblast. Development 131(23), 5817-5824 (2004).
doi: 10.1242/dev.01458
51. Jankowski, J.A., Bruton, R., Shepherd, N., Sanders, D.S.: Cadherin and catenin biology represent
a global mechanism for epithelial cancer progression. Mol. Pathol. 50(6), 289-290 (1997)
52. Qi, J., Wang, J., Romanyuk, O., Siu, C.H.: Involvement of Src family kinases in N-cadherin
phosphorylation and beta-catenin dissociation during transendothelial migration of melanoma
cells. Mol. Biol. Cell 17(3), 1261-1272 (2006). 10.1091/mbc.E05-10-0927, E05-10-0927 [pii]
53. McLachlan, R.W., Kraemer, A., Helwani, F.M., Kovacs, E.M., Yap, A.S.: E-cadherin
adhesion activates c-Src signaling at cell-cell contacts. Mol. Biol. Cell 18(8), 3214-3223
(2007). doi: 10.1091/mbc.E06-12-1154
54. Walker, D., Wood, S., Southgate, J., Holcombe, M., Smallwood, R.: An integrated agent-
mathematical model of the effect of intercellular signalling via the epidermal growth factor
receptor on cell proliferation. J. Theor. Biol. 242(3), 774-789 (2006)
55. Walker, D.C., Georgopoulos, N.T., Southgate, J.: From pathway to population-a multiscale
model of juxtacrine EGFR-MAPK signalling. BMC Syst. Biol. 2, 102 (2008)
56. An, G.: Introduction of an agent-based multi-scale modular architecture for dynamic
knowledge representation of acute inflammation. Theor. Biol. Med. Model. 5, 11 (2008)
57. An, G.: A model of TLR4 signaling and tolerance using a qualitative, particle-event-based
method: introduction of spatially configured stochastic reaction chambers (SCSRC). Math.
Biosci. 217(1), 43-52 (2009)
58. An, G.C., Faeder, J.R.: Detailed qualitative dynamic knowledge representation using a
BioNetGen model of TLR-4 signaling and preconditioning. Math. Biosci. 217(1), 53-63 (2009)
59. Sanga, S., Frieboes, H.B., Zheng, X., Gatenby, R., Bearer, E.L., Cristini, V.: Predictive
oncology: a review of multidisciplinary, multiscale in silico modeling linking phenotype,
morphology and growth. NeuroImage 37(Suppl 1), S120-S134 (2007)
Search WWH ::




Custom Search