Biomedical Engineering Reference
In-Depth Information
Acknowledgments This work has been supported in part by National Institutes of Health (NIH)
grant CA 113004. VC acknowledges the NIH for support through 1U54CA143837,
1U54CA143907, and 1U54CA149196, and the National Science Foundation (NSF) for support
under grant DMS-0818104.
References
1. Al-Hajj, M., Clarke, M.F.: Self-renewal and solid tumor stem cells. Oncogene 23(43),
7274-7282 (2004)
2. Balmain, A., Gray, J., Ponder, B.: The genetics and genomics of cancer. Nat. Genet.
33(Suppl), 238-244 (2003)
3. Kitano, H.: Computational systems biology. Nature 420(6912), 206-210 (2002)
4. Deisboeck, T.S., Zhang, L., Yoon, J., Costa, J.: In silico cancer modeling: is it ready for
prime time? Nat. Clin. Pract. 6(1), 34-42 (2009)
5. Schnell, S., Grima, R., Maini, P.K.: Multiscale modeling in biology—new insights into
cancer illustrate how mathematical tools are enhancing the understanding of life from the
smallest scale to the grandest. Am. Sci. 95(2), 134-142 (2007)
6. Anderson, A.R., Quaranta, V.: Integrative mathematical oncology. Nat. Rev. Cancer 8(3),
227-234 (2008). doi:10.1038/nrc2329, nrc2329 [pii]
7. Tracqui,
P.:
Biophysical
models
of
tumour
growth.
Rep.
Prog.
Phys.
72(5)
(2009).
doi:056701 10.1088/0034-4885/72/5/056701
8. Cristini, V., Lowengrub, J.S.: Multiscale Modeling of Cancer: An Integrated Experimental
and Mathematical Modeling Approach. Cambridge University Press, Cambridge (2010)
9. Lowengrub, J.S., Frieboes, H.B., Jin, F., Chuang, Y.L., Li, X., Macklin, P., Wise, S.M.,
Cristini, V.: Nonlinear modelling of cancer: bridging the gap between cells and tumours.
Nonlinearity 23(1), R1-R91 (2010). doi: 10.1088/0951-7715/23/1/r01
10. Schaller, G., Meyer-Hermann, M.: Continuum versus discrete model: a comparison for
multicellular tumour spheroids. Philos. Trans. 364(1843), 1443-1464 (2006)
11. Gatenby, R.A., Silva, A.S., Gillies, R.J., Frieden, B.R.: Adaptive therapy. Cancer Res.
69(11), 4894-4903 (2009)
12. Wang, Z., Deisboeck, T.S.: Computational modeling of brain tumors: discrete, continuum or
hybrid? Sci. Model. Simul. 15, 381-393 (2008)
13. Bonabeau,
E.:
Agent-based
modeling:
methods
and
techniques
for
simulating
human
systems. Proc. Nat. Acad. Sci. USA. 99(Suppl 3), 7280-7287 (2002)
14. Thorne, B.C., Bailey, A.M., Peirce, S.M.: Combining experiments with multi-cell agent-
based modeling to study biological tissue patterning. Br. Bioinform. 8(4), 245-257 (2007).
10.1093/bib/bbm024, bbm024[pii]
15. Abbott, R.G., Forrest, S., Pienta, K.J.: Simulating the hallmarks of cancer. Artif. Life 12(4),
617-634 (2006)
16. Spencer,
S.L.,
Gerety,
R.A.,
Pienta,
K.J.,
Forrest,
S.:
Modeling
somatic
evolution
in
tumorigenesis. PLoS Comput. Biol. 2(8), e108 (2006)
17. Pepper, J.W., Sprouffske, K., Maley, C.C.: Animal cell differentiation patterns suppress
somatic evolution. PLoS Comput. Biol. 3(12), e250 (2007)
18. Schaller, G., Meyer-Hermann, M.: Multicellular tumor spheroid in an off-lattice voronoi-
delaunay cell model. Phys. Rev. 71(5 Pt 1), 051910 (2005)
19. Pearce, I.G., Chaplain, M.A., Schofield, P.G., Anderson, A.R., Hubbard, S.F.: Chemotaxis-
induced spatio-temporal heterogeneity in multi-species host-parasitoid systems. J. Math.
Biol. 55(3), 365-388 (2007)
20. Ramis-Conde, I., Chaplain, M.A., Anderson, A.R.: Mathematical modelling of cancer cell
invasion of tissue. Math. Comp. Model. 47, 533-545 (2006)
Search WWH ::




Custom Search