Biomedical Engineering Reference
In-Depth Information
of large number of cells upon using just a few, well accessible parameters as a
function of the local chemical condition of the substrate or tissue. Further, the third
scale is based on the continuum-hypothesis and is hence based on (systems of)
PDEs. These PDEs can be solved using discretization techniques such as finite-
element techniques or discontinuous Galerkin methods combined with limiters
when the equations are chemotaxis-dominated (or mathematically speaking, pre-
dominantly hyperbolic). The paper describes the relations between the various
scales involved in terms of stochastic and deterministic relations.
References
1. Vermolen, F.J., Gefen, A.: A semi-stochastic cell-based formalism to model the dynamics of
migration of cells in colonies. Biomech. Model. Mechanobiol. 11(1-2), 183-195 (2012)
2. Byrne,
H.,
Drasdo,
D.:
Individual-based
and
continuum
models
of
growthing
cell
populations: a comparison. J. Math. Biol. 58, 657-687 (2009)
3. Sherratt, J.A., Murray, J.D.: Mathematical analysis of a basic model for epidermal wound
healing. J. Math. Biol. 29, 389-404 (1991)
4. Filion,
J.,
Popel,
A.P.:
A
reaction
diffusion
model
of
basic
fibroblast
growth
factor
interactions with cell surface receptors. Ann. Biomed.Eng. 32(5), 645-663 (2004)
5. Maggelakis, S.A.: A mathematical model for tissue replacement during epidermal wound
healing. Appl. Math. Modell. 27(3), 189-196 (2003)
6. Gaffney, E.A., Pugh, K., Maini, P.K.: Investigating a simple model for cutaneous wound
healing angiogenesis. J. Math. Biol. 45(4), 337-374 (2002)
7. Murray,
J.D.: Mathematical
Biology
II:
Spatial
Models
and
Biomedical
Applications.
Springer, New York (2004)
8. Maggelakis,
S.A.:
Modeling
the
role
of
angiogenesis
in
epidermal
wound
healing.
Discr.Cont. Syst. 4, 267-273 (2004)
9. Adam, J.A.: A simplified model of wound healing (with particular reference to the critical
size defect). Math. Comput. Model. 30, 23-32 (1999)
10. Vermolen,
F.J.,
Adam,
J.A.:
A
finite
element
model
for
epidermal
wound
healing.
In:Computational Science, ICCS 2007. Springer, Heidelberg, pp. 70-77
11. Olsen, L., Sherratt, J.A., Maini, P.K.: A mechanochemical model for adult dermal wound
closure and the permanence of the contracted tissue displacement role. J. Theor. Biol.
177,113-128 (1995)
12. Alarcon, T., Byrne, H., Maini, P., Panovska, J.: Mathematical modeling of angiogenesis and
vascular adaptation. In: Paton, R., McNamara, L. (eds.) Studies in Multidisciplinary, vol. 3,
pp. 369-387 (2006)
13. Vermolen F.J.: A simplified finite element model for tissue regeneration with angiogenesis.
ASCE J. Eng. Mech. 135(5), 450-460 (2009)
14. Javierre, E., Vermolen, F.J., Vuik, C, van der Zwaag, S.: A mathematical approach to
epidermal
wound
closure:
model
Analysis
and
Computer
Simulations.
J.
Math.
Biol.doi:
10.1007/s00285-008-0242-7;
http://www.springerlink.com/content/w4j663334
5j7228k/fulltext.pdf (2008)
15. Tranquillo, R.T., Murray, J.D.: Continuum model of fibroblast-driven wound contraction
inflammation-mediation. J. Theor. Biol. 158(2), 135-172 (1992)
16. Pettet, G.J., Byrne, H.M., McElwain, D.L.S., Norbury, J.: A model of wound healing
angiogenesis in soft tissue. Math. Biosci. 136, 35-63 (1996)
 
Search WWH ::




Custom Search