Biomedical Engineering Reference
In-Depth Information
of airway reactivity, as dose-response to methacholine challenge is a standard test for
quantifying asthma severity. However in VSM the relevant stimuli are the partial
pressures of O 2 and CO 2 , and nitric oxide (NO) release via endothelial sensing of
shear stress. The multi-scale model for the airways is focused on explaining
pathology (airway hyper-responsiveness, a hallmark of asthma) whereas under-
standing the dynamics of VSM in the pulmonary circulation is necessary simply to
explain the normal function of the lung. That is, PO 2 -mediated vasoconstriction and
NO-mediated vasodilation operate simultaneously in the normal lung, with their
balance (along with other signaling pathways) determining the local VSM tension.
Transitioning the organ- and vessel-level models for the pulmonary circulation to
studies of e.g. pulmonary hypertension, where wall remodeling may be a significant
component, will require a multi-scale approach that spans to cellular signaling.
References
1. Weibel, E.R.: Morphometry of the Human Lung. Springer, Berlin (1963)
2. Levitzky, M.G.: Pulmonary Physiology, 7th edn. The McGraw-Hill Companies, Inc., New
York (2007)
3. Grassino,
A.E.,
Anthonisen,
N.R.:
Chest
wall
distortion
and
regional
lung
volume
distribution in erect humans. J. Appl. Physiol. 39(6), 1004-1007 (1975)
4. Whitfield, A., Waterhouse, J., Arnott, W.M.: The total lung volume and its subdivisions. II.
The effect of posture. Brit J Soc Med 4, 86-97 (1950)
5. Hoffman,
E.A.,
Sinak,
L.J.,
Riman,
E.L.:
Effect
of
body
position
on
regional
lung
expansion: A computer tomographic approach. Physiologist 26(4), A-69 (1983)
6. Amis, T., Jones, H., Hughes, J.: Effect of posture on inter-regional distribution of pulmonary
perfusion and VA/Q ratios in man. Respir. Physiol. 56, 169-182 (1984)
7. West, J.B.: Regional differences in gas exchange in the lung of erect man. J. Appl. Physiol.
17(6), 893-898 (1962)
8. Hopkins, S.R., Henderson, A.C., Levin, D.L., Yamada, K., Arai, T., Buxton, R.B., Prisk,
G.K.: Vertical gradients in regional lung density and perfusion in the supine human lung:
the slinky effect. J. Appl. Physiol. 103(1), 240-248 (2007)
9. Prisk, G.K., Yamada, K., Henderson, A.C., Arai, T.J., Levin, D.L., Buxton, R.B., Hopkins,
S.R.: Pulmonary perfusion in the prone and supine postures in the normal human lung.
J. Appl. Physiol. 103, 883-894 (2007)
10. Albert, M.S., Cates, G.D., Driehuys, B., Happer, W., Saam, B., Springer Jr., C.S., Wishnia,
A.: Biological magnetic resonance imaging using laser-polarized 129Xe. Nature 370(6486),
199-201 (1994)
11. West, J.B., Dollery, C.T., Naimark, A.: Distribution of blood flow in isolated lung; relation
to vascular and alveolar pressures. J. Appl. Physiol. 19, 713-724 (1964)
12. Hughes, M., West, J.B.: Point: Gravity is the major factor determining the distribution of
blood flow in the human lung. J. Appl. Physiol. 104(5), 1531-1533 (2008)
13. West, J.: Importance of gravity in determining the distribution of pulmonary blood flow.
J. Appl. Physiol. 93(5), 1888-1889 (2002)
14. Glenny, R.W.: Counterpoint: gavity is not the major factor determining the distribution of
blood flow in the healthy human lung. J. Appl. Physiol. 104(5), 1533-1535 (2008)
15. Glenny, R.W., Bernard, S., Robertson, H.T., Hlastala, M.P.: Gravity is an important but
secondary determinant of regional pulmonary blood flow in upright primates. J. Appl.
Physiol. 86(2), 623-632 (1999)
Search WWH ::




Custom Search