Biomedical Engineering Reference
In-Depth Information
Although vascular mechanobiological modeling is already helping to establish
better patient selection criteria and more objective strategies for both choosing and
optimising personalised therapeutic options, there is undoubtedly further scope for
this predictive modeling framework in the development of the more individualised
medical therapies of the future.
References
1. Mi, Q., Riviere, B., Clermont, G., Steed, DL., Vodovotz, Y. (2007) Agent-based model of
inflammation and wound healing: insights into diabetic foot ulcer pathology and the role of
transforming growth factor-b1. Wound Rep. Reg. 15, 671-682
2. Li, N.Y.K., Verdolini, K., Clermont, G., Mi, Q., Rubinstein, E.N., et al.: A patient-specific in
silico model of inflammation and healing tested in acute vocal fold injury. PLoS ONE 3(7),
e2789 (2008). doi: 10.1371/journal.pone.0002789
3. Pappalardo, F., Cincotti, A., Motta, A., Pennisi, M.: Agent based modeling of atherosclerosis:
a concrete help in personalized treatments. ICIC 2009, LNAI 5755, pp. 386-396 (2009)
4. Caiazzo, A., et al.: Towards a complex automata multiscale model of in-stent restenosis. In:
Allen, G., Nabrzyski, J.,VanAlbada, G.D., Sloot, P.M.A. (eds.) Computational Science—
Iccs, Part I, vol. 5544, pp. 705-714. Springer, Berlin (2009)
5. Tahir, H., Hoekstra, A.G., Lorenz, E., Lawford, P.V., Hose, D.R., Gunn, J., Evans, D.J.W.:
Multi-scale simulations of the dynamics of in-stent restenosis: impact of stent deployment
and design. Interface Focus 1(3), 365-373 (2011). doi: 10.1098/rsfs.2010.0024
6. Boyle, C.J., Lennon, A.B., Early, M., Kelly, D.J., Lally, C., Prendergast, P.J.: Computational
simulation methodologies for mechanobiological modelling: a cell-centred approach to
neointima development in stents. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368,
2919-2935 (2010). doi: 10.1098/rsta.2010.0071
7. Boyle, C.J., Lennon, A.B., Prendergast, P.J.: In silico prediction of the mechanobiological
response of arterial tissue: application to angioplasty and stenting. J. Biomech. Eng. 133(8),
081001 (2011). doi: 10.1115/1.4004492
8. Zahedmanesh, H., Cahill, P.A., Lally, C.: Vascular stent design optimisation using numerical
modelling techniques. In: Naik, G.R. (ed.) Applied Biological Engineering; Principles and
Practice. InTech, ISBN 978-953-51-0412-4 (2012). doi: 10.5772/37357
9. Budu-Grajdeanu, P., Schugart, R.C., Friedman, A., Valentine, C., Agarwal, A.K., Rovin, B.H.:
A mathematical model of venous neointimal hyperplasia formation. Theor. Biol. Med. Model.
5, 2 (2008). doi: 10.1186/1742-4682-5-2
10. Zahedmanesh, H., Lally, C.: A multiscale mechanobiological model using agent based
models, application to vascular tissue engineering. Biomech. Model. Mechanobiol. 11,
363-377 (2012). doi: 10.1007/s10237-011-0316-0
11. Migliavacca, F., Petrini, L., Colombo, M., Auricchio, F., Pietrabissa, R.: Mechanical
behavior of coronary stents investigated through the finite element method. J. Biomech. 35,
803-811 (2002)
12. Lally, C., Dolan, F., Prendergast, P.J.: Cardiovascular stent design and vessel stresses: a finite
element analysis. J. Biomech. 38, 1574-1581 (2005). doi: 10.1016/j.jbiomech.2004.07.022
13. Bedoya, J., Meyer, C.A., Timmins, L.H., Moreno, M.R., Moore Jr, J.E.: Effects of stent design
parameters on normal artery wall mechanics. J. Biomech. Eng. 128(5), 757-765 (2006)
14. Zahedmanesh, H., Lally, C.: Determination of the influence of stent strut thickness using the
finite element method: implications for vascular injury and in-stent restenosis. Med. Biol.
Eng. Comput. 47, 385-393 (2009). doi: 10.1007/s11517-009-0432-5
Search WWH ::




Custom Search