Biomedical Engineering Reference
In-Depth Information
47. Ramli, J., CalderonArtero, P., Block, R.C., Mousa, S.A.: Novel therapeutic targets for
preserving
a
healthy
endothelium:
strategies
for
reducing
the
risk
of
vascular
and
cardiovascular disease. Cardiol. J. 18, 352 (2011)
48. Ridnour, L.A., Isenberg, J.S., Espey, M.G., Thomas, D.D., Roberts, D.D., Wink, D.A.: Nitric
oxide regulates angiogenesis through a functional switch involving thrombospondin-1. Proc.
Natl. Acad. Sci. USA 102, 13147 (2005)
49. Robertson, S.H. et al.: Multiscale computational analysis of Xenopus laevis morphogenesis
reveals key insights of systems-level behavior. BMC Syst. Biol. 1, 46 (2008)
50. Rudic, R.D., Shesely, E.G., Maeda, N., Smithies, O., Segal, S.S., Sessa, W.C.: Direct
evidence for the importance of endothelium-derived nitric oxide in vascular remodeling.
J. Clin. Invest. 101, 731 (1998)
51. Schermuly,
R.T.,
et
al.:
Reversal
of
experimental
pulmonary
hypertension
by
PDGF
inhibition. J. Clin. Invest. 115, 2811 (2005)
52. Scianna, M., Munaron, L., Preziosi, L.: A multiscale hybrid approach for vasculogenesis and
related potential blocking therapies. Prog. Biophys. Mol. Biol. 106, 450 (2011)
53. Segovia-Juarez,
J.L.,
Ganguli,
S.,
Kirschner,
D.:
Identifying
control
mechanisms
of
granuloma
formation
during
M.
tuberculosis
infection
using
an
agent-based
model.
J. Theor. Biol. 231, 357 (2004)
54. Sessa, W.C.: eNOS at a glance. J. Cell Sci. 117, 2427 (2004)
55. Simpson, M.J., Merrifield, A., Landman, K.A., Hughes, B.D.: Simulating invasion with
cellular automata: connecting cell-scale and population-scale properties. Phys. Rev. E Stat.
Nonlin. Soft Matter Phys. 76, 021918 (2007)
56. Smith Jr., R.S., Lin, K.F., Agata, J., Chao, L., Chao, J.: Human endothelial nitric oxide
synthase
gene
delivery
promotes
angiogenesis
in
a
rat
model
of
hindlimb
ischemia.
Arterioscler. Thromb. Vasc. Biol. 22, 1279 (2002)
57. Thorne, B.C., Bailey, A.M., Peirce, S.M.: Combining experiments with multi-cell agent-
based modeling to study biological tissue patterning. Br. Bioinf. 8, 245 (2007)
58. Thorne, B.C., Hayenga, H.N., Humphrey, J.D., Peirce, S.M.: Toward a multi-scale
computational model of arterial adaptation in hypertension: verification of a multi-cell
agent based model. Front. Physiol. 2, 20 (2011)
59. Tomasek, J.J., Gabbiani, G., Hinz, B., Chaponnier, C., Brown, R.A.: Myofibroblasts and
mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 3, 349 (2002)
60. Tsoukias,
N.M.:
Nitric
oxide
bioavailability
in
the
microcirculation:
insights
from
mathematical models. Microcirculation 15, 813 (2008)
61. Valentin, A., Cardamone, L., Baek, S., Humphrey, J.D.: Complementary vasoactivity and
matrix remodelling in arterial adaptations to altered flow and pressure. J. R. Soc. Interface 6,
293 (2009)
62. Wagenseil,
J.E.,
Mecham,
R.P.:
Vascular
extracellular
matrix
and
arterial
mechanics.
Physiol. Rev. 89, 957 (2009)
63. Wilensky, U.: NetLogo— http://ccl.northwestern.edu/netlogo . Center for Connected Learning
and Computer-Based Modeling. Northwestern University, Evanston (1999)
64. Yamamoto, K., Ikeda, U., Shimada, K.: Role of mechanical stress in monocytes/
macrophages: implications for atherosclerosis. Curr. Vasc. Pharmacol. 1, 315 (2003)
65. Yang, J., Clark, J.W., Bryan, R.M., Robertson, C.S.: Mathematical modeling of the nitric
oxide/cGMP pathway in the vascular smooth muscle cell. Am. J. Physiol. Heart Circ. Physiol.
289, H886 (2005)
66. Yokota, T., Ma, R.C., Park, J.Y., Isshiki, K., Sotiropoulos, K.B., Rauniyar, R.K., Bornfeldt,
K.E., King, G.L.: Role of protein kinase C on the expression of platelet-derived growth factor
and endothelin-1 in the retina of diabetic rats and cultured retinal capillary pericytes.
Diabetes 52, 838 (2003)
67. Yoshida, T., Gan, Q., Shang, Y., Owens, G.K.: Platelet-derived growth factor-BB represses
smooth muscle cell marker genes via changes in binding of MKL factors and histone
deacetylases to their promoters. Am. J. Physiol. Cell Physiol. 292, C886 (2007)
Search WWH ::




Custom Search