Biomedical Engineering Reference
In-Depth Information
References
1. Abbott, R.G., Forrest, S., Pienta, K.J.: Simulating the hallmarks of cancer. Artif. Life 12, 617
(2006)
2. Alon, U.: Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8, 450
(2007)
3. An, G.: Concepts for developing a collaborative in silico model of the acute inflammatory
response using agent-based modeling. J. Crit. Care 21, 105 (2006)
4. An, G.: In silico experiments of existing and hypothetical cytokine-directed clinical trials
using agent-based modeling. Crit. Care Med. 32, 2050 (2004)
5. An, G.: Mathematical modeling in medicine: a means, not an end. Crit. Care Med. 33, 253
(2005)
6. Baek, S., Rajagopal, K.R., Humphrey, J.D.: A theoretical model of enlarging intracranial
fusiform aneurysms. J. Biomech. Eng. 128, 142 (2006)
7. Bailey, A.M., Thorne, B.C., Peirce, S.M.: Multi-cell agent-based simulation of the
microvasculature to study the dynamics of circulating inflammatory cell trafficking. Ann.
Biomed. Eng. 35, 916 (2007)
8. Bauer,
A.L.,
Jackson,
T.L.,
Jiang,
Y.:
A
cell-based
model
exhibiting
branching
and
anastomosis during tumor-induced angiogenesis. Biophys. J. 92, 3105 (2007)
9. Bauer, A.L., Jackson, T.L., Jiang, Y., Rohlf, T.: Receptor cross-talk in angiogenesis: mapping
environmental cues to cell phenotype using a stochastic, Boolean signaling network model.
J. Theor. Biol. 264, 838 (2010)
10. Benest, A.V., Stone, O.A., Miller, W.H., Glover, C.P., Uney, J.B., Baker, A.H., Harper, S.J.,
Bates, D.O.: Arteriolar genesis and angiogenesis induced by endothelial nitric oxide synthase
overexpression results in a mature vasculature. Arterioscler. Thromb. Vasc. Biol. 28, 1462
(2008)
11. Bhalla, U.S., Iyengar, R.: Emergent properties of networks of biological signaling pathways.
Science 283, 381 (1999)
12. Bian, K., Doursout, M.F., Murad, F.: Vascular system: role of nitric oxide in cardiovascular
diseases. J. Clin. Hypertens (Greenwich) 10, 304 (2008)
13. Bouvet, C., Moreau, S., Blanchette, J., de Blois, D., Moreau, P.: Sequential activation of
matrix metalloproteinase 9 and transforming growth factor beta in arterial elastocalcinosis.
Arterioscler. Thromb. Vasc. Biol. 28, 856 (2008)
14. Casal, A., Sumen, C., Reddy, T.E., Alber, M.S., Lee, P.P.: Agent-based modeling of the
context dependency in T cell recognition. J. Theor. Biol. 236, 376 (2005)
15. Castro, M.M., Tanus-Santos, J.E., Gerlach, R.F.: Matrix metalloproteinases: targets for
doxycycline to prevent the vascular alterations of hypertension. Pharmacol. Res. 64, 567
(2011)
16. Chaturvedi,
R.,
et
al.:
On
multiscale
approaches
to
three-dimensional
modelling
of
morphogenesis. J. R. Soc. Interface 2, 237 (2005)
17. Chen, N., Glazier, J.A., Izaguirre, J.A., Alber, M.S.: A parallel implementation of the cellular
potts model for simulation of cell-based morphogenesis. Comput. Phys. Commun. 176, 670
(2007)
18. Christ, G.J., Spray, D.C., el-Sabban, M., Moore, L.K., Brink, P.R.: Gap junctions in vascular
tissues. Evaluating the role of intercellular communication in the modulation of vasomotor
tone. Circ. Res. 79, 631 (1996)
19. Davies, P.F.: Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75, 519 (1995)
20. DiCorleto, P.E., Bowen-Pope, D.F.: Cultured endothelial cells produce a platelet-derived
growth factor-like protein. Proc. Natl. Acad. Sci. USA. 80, 1919 (1983)
21. Drasdo, D., Forgacs, G.: Modeling the interplay of generic and genetic mechanisms in
cleavage, blastulation, and gastrulation. Dev. Dyn. 219, 182 (2000)
22. Duran,
W.N.,
Breslin,
J.W.,
Sanchez,
F.A.:
The
NO
cascade,
eNOS
location,
and
microvascular permeability. Cardiovasc. Res. 87, 254 (2010)
Search WWH ::




Custom Search