Biomedical Engineering Reference
In-Depth Information
electromechanical coupling and mechanical feedback to the cells. The progress in
gastrointestinal electromechanical modeling is therefore only at the beginning, and
more much work will be required before the work can be translated to a better
understanding and treatment of gastrointestinal motility disorders in a clinical
setting.
References
1. Ailiani, A.C., Neuberger, T., Brasseur, J.G., Banco, G., Wang, Y., Smith, N.B., Webb, A.G.:
Quantitative analysis of peristaltic and segmental motion in vivo in the rat small intestine
using dynamic MRI. Magnet. Reson. Med. 62(1), 116-126 (2009)
2. Aliev, R.R., Richards, W., Wikswo, J.P.: A simple nonlinear model of electrical activity in
the intestine. J. Theor. Biol. 204(1), 21-28 (2000)
3. Alvarez, W.C.: Functional variations in contractions of different parts of the small intestine.
Am. J. Physiol. 35, 177-193 (1914)
4. Alvarez, W.C., Mahoney, L.J.: Action currents in stomach and intestine. Am. J. Physiol. 58,
476-493 (1922)
5. Arkwright, J.W., Blenman, N.G., Underhill, I.D., Maunder, S.A., Szczesniak, M.M., Dinning,
P.G., Cook, I.J.: In-vivo demonstration of a high resolution optical fiber manometry catheter
for diagnosis of gastrointestinal motility disorders. Opt. Express. 17, 4500-4508 (2009)
6. Bellini, C., Glass, P., Sitti, M., Di Martino, E.S.: Biaxial mechanical modeling of the small
intestine. J. Mech. Behav. Biomed. Mater. 4(8), 1727-1740 (2011)
7. Berne, R.M., Levy, M.N., Koeppen, B.M., Stanton, B.A.: Physiology, 4th edn. Mosby, St.
Louis (1998)
8. Beyder, A., Rae, J.L., Bernard, C., Strege, P.R., Sachs, F., Farrugia, G.: Mechanosensitivity
of Nav1.5, a voltage-sensitive sodium channel. J. Physiol. 588(24), 4969-4985 (2010)
9. Bolton, T.B., Prestwich, S.A., Zholos, A.V., Gordienko, D.V.: Excitation contraction coupling
in gastrointestinal and other smooth muscles. Annu. Rev. Physiol. 61, 85-115 (1999)
10. Buist, M.L., Poh, Y.C.: An extended bidomain framework incorporating multiple cell types.
Biophys. J. 99(1), 13-18 (2010)
11. Cajal, S.R.: Histologie du Systeme Nerveux de l'homme et des Vertebretes. Maloine, Paris
(1911)
12. CMISS. http://www.cmiss.org/
13. Coleski, R., Hasler, W.L.: Directed endoscopic mucosal mapping of normal and dysrhythmic
gastric slow waves in healthy humans. Neurogastroenterol. Motil. 16(5), 557-555 (2004)
14. Corrias, A., Buist, M.L.: A quantitative model of gastric smooth muscle cellular activation.
Ann. Biomed. Eng. 35(9), 1595-1607 (2007)
15. Costa, M., Sanders, K.M., Schemann, M., Smith, T.K., Cook, I.J., De Giorgio, R., Dent, J.,
Grundy, D., Shea-donohue, T., Tonini, M. et al.: A teaching module on cellular control of
small intestinal motility. Neurogastroenterol. Motil. 17, 4-19 (2005)
16. Davidson, J.B., O'Grady, G., Arkwright, J.W., Zarate, N., Scott, S.M., Pullan, A.J., Dinning, P.J.:
Anatomical registration and three-dimensional visualization of low and high-resolution pan-
colonic manometry recordings. Neurogastroenterol. Motil. 23(4), e171 (2011)
17. Dinning, P.G., Arkwright, J.W., Costa, M., Wiklendt, L., Hennig, G., Brookes, S.J.H.,
Spencer, N.J.: Temporal relationships between wall motion, intraluminal pressure, and flow
in the isolated rabbit small intestine. Am. J. Physiol. Gastr. L 300(4), G577-G585 (2011)
18. Dinning, P.G., Zarate, N., Hunt, L.M., Fuentealba, S.E., Mohammed, S.D., Szczesniak, M.M.,
Lubowski, D.Z., Preston, S.L., Fairclough, P.D., Lunniss, P.J., Scott, S.M., Cook, I.J.:
Pancolonic spatiotemporal mapping reveals regional deficiencies in, and disorganization of
Search WWH ::




Custom Search