Biomedical Engineering Reference
In-Depth Information
28. Yamamoto, E., Kogawa, D., Tokura, S., Hayashi, K.: Biomechanical response of
collagen fascicles to restressing after stress deprivation during culture. J. Biomech. 40,
2063-2070 (2007)
29. Kannus, P.: Structure of the tendon connective tissue. Scand. J. Med. Sci. Sports 10,
312-320 (2000)
30. Silver, F.H., Freeman, J.W., Horvath, I., Landis, W.J.: Molecular basis for elastic energy
storage in mineralized tendon. Biomacromolecules 2, 750-756 (2001)
31. Wolinsky, H., Seymour, G.: A lamellar unit of aortic medial structure and function in
mammals. Circ. Res. 20, 99-111 (1967)
32. Clark, J.M., Glagov, S.: Transmural organization of the arterial media—the lamellar unit
revisited. Arteriosclerosis 5, 19-34 (1985)
33. Wolinsky, H., Seymour, G.: Comparison of abdominal and thoracic aortic medial structure in
mammals. Circ. Res. 25, 677-686 (1969)
34. Hallock, P., Benson, I.C.: Studies on the elastic properties of human isolated aorta. J. Clin.
Invest. 16, 595-602 (1937)
35. Åstrand, H., Stålhand, J., Karlsson, M., Sonesson, B., Länne, T.: In vivo estimation of the
contribution of elastin and collagen to the mechanical properties in the human abdominal
aorta: effects of age and sex. J. Appl. Phys. 110:176-187 (2011)
36. O'Connell, M.K., Murthy, S., Phan, S., Xu, C., Buchanan, J., Spilker, R., Dalman, R.L.,
Zarins , C.K., Denk, W., Taylor, C.A.: The three-dimensional micro- and nanostructure of the
aortic medial lamellar unit measured using 3D confocal and electron microscopy imaging.
Matrix Biol. 27, 171-181 (2008)
37. Behmoaras, J., Osborne-Pellegrin, M., Gauguier, D., Jacob, M.P.: Characteristics of the aortic
elastic network and related phenotypes in seven inbred rat strains. Am. J. Physiol. Heart. Circ.
Physiol. 288, 769-777 (2005)
38. Merrilees, M., Tiang, K.M., Scott, L.: Changes in collagen fibril diameters across artery
walls including a correlation with glycosaminoglycan content. Connect. Tissue Res. 16,
237-257 (1987)
39. Rachev, A., Stergiopulos, N., Meister, J.J.: Theoretical study of dynamics of arterial wall
remodeling in response to changes in blood pressure. J. Biomech. 29, 635-642 (1996)
40. Zhang, W., Herrera, C., Atluri, S.N., Kassab, G.S.: The effect of longitudinal pre-stretch and
radial constraint on the stress distribution in the vessel wall: a new hypothesis. Mech. Chem.
Biosyst. 2, 41-52 (2005)
41. Kassab, G.S.: Biomechanics of the cardiovascular system: the aorta as an illustratory
example. J. R. Soc. Interface 3, 719-740 (2006)
42. Fung, Y.C.: Biorheology of soft tissues. Biorheology 10, 199-212 (1973)
43. Yin, L., Elliott, D.M.: A biphasic and transversely isotropic mechanical model for tendon:
application to mouse tail fascicles in uniaxial tendons. J. Biomech. 37, 907-916 (2004)
44. Comninou, M., Yannas, I.V.: Dependance of stress-strain nonlinearity of connective tissues
on the geometry of collagen fibers. J. Biomech. 9, 427-433 (1976)
45. Lanir, Y.: A structural theory for the homogeneous biaxial stress-strain relationships in flat
collagenous tissues. J. Biomech. 12, 423-436 (1979)
46. Freed, A.D., Doehring, T.C.: Elastic model for crimped collagen fibrils. J. Biomech. Eng.
127, 587-593 (2005)
47. Holzapfel, G.A., Gasser, T.C., Ogden, R.W.: A new constitutive framework for arterial wall
mechanics and a comparative study of material models. J. Elast. 61, 1-48 (2000)
48. Holzapfel, G.A., Gasser, T.C., Stadler, M.: A structural model for the viscoelastic behavior of
arterial walls: continuum formulation and finite element analysis. Eur. J. Mech. A Solids 21,
441-463 (2002)
49. Ciarletta, P., Micera, S., Accoto, D., Dario, P.: A novel microstructural approach in tendon
viscoelastic modelling at the fibrillar level. J. Biomech. 39, 2034-2042 (2006)
50. Tang, H., Buehler, M.J., Moran, B.: A constitutive model of soft tissue: from nanoscale
collagen to tissue continuum. Ann. Biomed. Eng. 37, 1117-1130 (2009)
Search WWH ::




Custom Search