Biomedical Engineering Reference
In-Depth Information
smaller gene panels. The use of NGS is clinical laboratories is expanding as
evidenced by the increasing number of panels and laboratories offering such ser-
vices (Chaps. 5-8). This expansion will continue as clinical genetic testing moves
towards exome sequencing (Chap. 8 ) .
References
1000 Genomes Project Consortium, Abecasis GR, Altshuler D et al (2010) A map of human
genome variation from population-scale sequencing. Nature 467:1061-1073. doi: 10.1038/
nature09534
Abou Jamra R, Philippe O, Raas-Rothschild A et al (2011) Adaptor protein complex 4 defi ciency
causes severe autosomal-recessive intellectual disability, progressive spastic paraplegia, shy
character, and short stature. Am J Hum Genet 88:788-795. doi: 10.1016/j.ajhg.2011.04.019
Bao S, Jiang R, Kwan W et al (2011) Evaluation of next-generation sequencing software in map-
ping and assembly. J Hum Genet 56:406-414. doi: 10.1038/jhg.2011.43
Barak T, Kwan KY, Louvi A et al (2011) Recessive LAMC3 mutations cause malformations of
occipital cortical development. Nat Genet 43:590-594. doi: 10.1038/ng.836
Bick D, Dimmock D (2011) Whole exome and whole genome sequencing. Curr Opin Pediatr
23:594-600. doi: 10.1097/MOP.0b013e32834b20ec
Bilgüvar K, Oztürk AK, Louvi A et al (2010) Whole-exome sequencing identifi es recessive
WDR62 mutations in severe brain malformations. Nature 467:207-210. doi: 10.1038/
nature09327
Bolze A, Byun M, McDonald D et al (2010) Whole-exome-sequencing-based discovery of human
FADD defi ciency. Am J Hum Genet 87:873-881. doi: 10.1016/j.ajhg.2010.10.028
Borgström E, Lundin S, Lundeberg J (2011) Large scale library generation for high throughput
sequencing. PLoS One 6:e19119. doi: 10.1371/journal.pone.0019119
Brkanac Z, Spencer D, Shendure J et al (2009) IFRD1 is a candidate gene for SMNA on chromo-
some 7q22-q23. Am J Hum Genet 84:692-697. doi: 10.1016/j.ajhg.2009.04.008
Byun M, Abhyankar A, Lelarge V et al (2010) Whole-exome sequencing-based discovery of
STIM1 defi ciency in a child with fatal classic Kaposi sarcoma. J Exp Med 207:2307-2312.
doi: 10.1084/jem.20101597
Clark MJ, Chen R, Lam HYK et al (2011) Performance comparison of exome DNA sequencing
technologies. Nat Biotechnol 29:908-914. doi: 10.1038/nbt.1975
Eid J, Fehr A, Gray J et al (2009) Real-time DNA sequencing from single polymerase molecules.
Science 323:133-138. doi: 10.1126/science.1162986
Flusberg BA, Webster DR, Lee JH et al (2010) Direct detection of DNA methylation during single-
molecule, real-time sequencing. Nat Methods 7:461-465. doi: 10.1038/nmeth.1459
Huse SM, Huber JA, Morrison HG et al (2007) Accuracy and quality of massively parallel DNA
pyrosequencing. Genome Biol 8:R143. doi: 10.1186/gb-2007-8-7-r143
Kalay E, Yigit G, Aslan Y et al (2011) CEP152 is a genome maintenance protein disrupted in
Seckel syndrome. Nat Genet 43:23-26. doi: 10.1038/ng.725
Koboldt DC, Ding L, Mardis ER, Wilson RK (2010) Challenges of sequencing human genomes.
Brief Bioinform 11:484-498. doi: 10.1093/bib/bbq016
Krawitz PM, Schweiger MR, Rödelsperger C et al (2010) Identity-by-descent fi ltering of exome
sequence data identifi es PIGV mutations in hyperphosphatasia mental retardation syndrome.
Nat Genet 42:827-829. doi: 10.1038/ng.653
Kuhlenbäumer G, Hullmann J, Appenzeller S (2011) Novel genomic techniques open new avenues
in the analysis of monogenic disorders. Hum Mutat 32:144-151. doi: 10.1002/humu.21400
Ledergerber C, Dessimoz C (2011) Base-calling for next-generation sequencing platforms. Brief
Bioinform 12:489-497. doi : 10.1093/bib/bbq077
Search WWH ::




Custom Search