Biomedical Engineering Reference
In-Depth Information
C H 3
HO
CH 2 CH 2 OH 2 CH O
CH 2 CH 2 OH
m
n
n
32
CH 3
CH 3
HO
CH 2 CH
OH 2 CH 2 OH 2 CH
OH
n
m
n
33
CH 3
CH 3
HO H 2 CH 2 OCH
CH 2
CH 2 CH
OCH 2 CH 2 OH
n
n
m
m
NCH 2 CH 2 N
HO H 2 CH 2 OCH
CH 3
CH 2
CH 2 CH
CH 3
OCH 2 CH 2 OH
m
n
n
m
34
CH 3
C H 3
HO H H 2 OCH 2 CH 2
CH 2 CH 2 OCH 2 CH O
H
n
n
m
m
NCH 2 CH 2 N
HO H H 2 OCH 2 CH 2
m
CH 2 CH 2 OCH 2 CH O
H
n
n
m
CH 3
CH 3
35
(D)
(D) PEO-based hydrogel: 32. Pluronic, 33. Pluronic R, 34. Tetronic, and
35.Tetronic R.
Figure 1.2. Chemical structures of some commonly used biodegradable
and nondegradable polymers in tissue engineering. 1
etc. 1 , 5 , 7 Generally, 3D porous scaffolds can be fabricated from nat-
ural and synthetic polymers (Fig. 1.2 shows these chemical struc-
tures), ceramics, metal in very few cases, composite biomaterials,
and cytokine release materials. Very recently, “intelligent” scaffolds
arebeingextensivelytestedtomimicthehumanbody'senvironment
as the ECMto Mother Nature.
1.2.2 Bioceramic Scaffolds
“Bioceramic” is a term introduced for biomaterials that are pro-
duced by sintering or melting inorganic raw materials to create
an amorphous or a crystalline solid body that can be used as an
implant. Porous final products have been mainly used as scaffolds.
The components of ceramics are calcium, silica, phosphorous, mag-
nesium, potassium, and sodium. Bioceramic used in the fabrication
for tissue engineering might be classified as nonresorbable (rela-
tivelyinert),bioactive,orsurfaceactive(semi-inert)andbiodegrad-
ableorresorbable(noninert).Alumina,zirconia,siliconenitride,and
 
Search WWH ::




Custom Search