Biomedical Engineering Reference
In-Depth Information
27. Bozic KJ, Kurtz SM, Lau E, et al. The epidemiology of revision total hip
arthroplasty in the United States. J Bone Joint Surg (Am) 91, 128±133, 2009.
28. Emery DFG, Clarke HJ, Grover ML. Stanmore total hip replacement in younger
patients: review of a group of patients under 50 years of age as operation. J Bone
Joint Surg 79, 240±246, 1997.
29. Balasundaram G, Webster TJ. Nanotechnology and biomaterials for orthopedic
medical applications. Nanomed 1(2), 169±176, 2006.
30. Balasundaram G, Webster TJ. An overview of nano-polymers for orthopedic
applications. Macromol Biosci 7(5), 635±642, 2007.
31. Smallman RE, Bishop RJ. Modern Physical Metallurgy and Materials Engineering
± Science, Process, Applications (6th Edition). Elsevier, 1998.
32. Liu H, Webster TJ. Nanomedicine for implants: a review of studies and necessary
experimental tools. Biomaterials 28(2), 354±369, 2006.
33. Kaplan FS, Hayes WC, Keaveny TM, Boskey A, Einhorn TA, Iannotti J. Form and
function of bone. Orthopedic Basic Science. Simon SR (ed.). Rosemont, IL:
American Academy of Orthopedic Surgeons, pp. 127±185, 1994.
34. Wu S, Liu X, Hu T, Chu PK, Ho JP, Chan YL, Yeung KW, Chu CL, Hung TF, Huo
KF, Chung CY, Lu WW, Cheung KM, Luk KD. A biomimetic hierarchical
scaffold: natural growth of nanotitanates on three-dimensional microporous Ti-
based metals. Nano Lett 8(11), 3803±3808, 2008.
35. Puckett S, Pareta R, Webster TJ. Nano rough micron patterned titanium for
directing osteoblast morphology and adhesion. Int J Nanomedicine 3(2), 229±241,
2008.
36. Chiang CY, Chiou SH, Yang WE, Hsu ML, Yung MC, Tsai ML, Chen LK, Huang
HH. Formation of TiO 2 nano-network on titanium surface increases the human cell
growth. Dent Mater 25(8), 1022±1029, 2009.
37. Ogawa T, Saruwatari L, Takeuchi K, Aita H, Ohno N. Ti nano-nodular structuring
for bone integration and regeneration. J Dent Res 87(8), 751±756, 2008.
38. Brunette DM, Tengvall P, Textor M, Thomsen P. Mechanical, thermal, chemical
and electrochemical surface treatment of titanium implants: studies on the early
tissue response to machined and electropolished implants with different oxide
thicknesses. Biomaterials 17, 605, 1996.
39. Ruan C, Paulose M, Varghese OK, Mor GK, Grimes CA. Fabrication of highly
ordered TiO 2 nanotube arrays using an organic electrolyte. J Phys Chem B 109(33),
15754±15759, 2005.
40. Allam NK, Grimes CA. Room temperature one-step polyol synthesis of anatase
TiO 2 nanotube arrays: photoelectrochemical properties. Langmuir 25(13), 7234±
7040, 2009.
41. Alivov Y, Pandikunta M, Nikishin S, Fan ZY. The anodization voltage influence on
the properties of TiO 2 nanotubes grown by electrochemical oxidation.
Nanotechnology 20(22), 225602, 2009.
42. Berger S, Ghicov A, Nah YC, Schmuki P. Transparent TiO 2 nanotube electrodes
via thin layer anodization: fabrication and use in electrochromic devices. Langmuir
25(9), 4841±4844, 2009.
43. Yao C, Slamovich EB, Webster TJ. Enhanced osteoblast functions on anodized
titanium with nanotube-like structures. J Biomed Mater Res A 85(1), 157±166,
2008.
44. Burns K, Yao C, Webster TJ. Increased chondrocyte adhesion on nanotubular
anodized titanium. J Biomed Mater Res A 88(3), 561±568, 2009.
45. Sul YT, Johansson CB, RÈ ser K, Albrektsson T. Qualitative and quantitative
￿ ￿ ￿ ￿ ￿
Search WWH ::




Custom Search