Biomedical Engineering Reference
In-Depth Information
Rose, E. A., Gelijns, A. C., Moskowitz, A. J., Heitjan, D. F., Stevenson, L. W.,
Dembitsky, W., Long, J. W., Ascheim, D. D., Tierney, A. R., Levitan, R. G.,
Watson, J. T., Ronan, N. S., Shapiro, P. A., Lazar, R. M., Miller, L. W., Gupta, L.,
Frazier, O. H., Desvigne-Nickens, P., Oz, M. C., Poirier, V. L. & Meier, P. (2001)
Long-term use of a left ventricular assist device for end-stage heart failure. New
England Journal of Medicine, 345, 1435±1443.
Scott-Burden, T., Tock, C. L., Bosely, J. P., Clubb, F. J., S.M. Jr, P. S. M., Schwarz, J. J.,
Engler, D. A., Frazier, O. H. & Casscells, S. W. 3rd (1998) Nonthrombogenic,
adhesive cellular lining for left ventricular assist devices. Circulation, 10, II339±
II345.
Sin, D. C., Kei, H. L. & Miao, X. (2009) Surface coatings for ventricular assist devices.
Expert Reviews of Medical Devices, 6, 51±60.
Sreerekha, P. R. & Krishnan, L. K. (2006) Cultivation of endothelial progenitor cells on
fibrin matrix and layering on dacron/polytetrafluoroethylene vascular grafts.
Artificial Organs, 30, 242±249.
Sui, J. H. & Cai, W. (2006) Effect of diamond-like carbon (DLC) on the properties of the
NiTi alloys. Diamond and Related Materials, 15, 1720±1726.
Sui, J. H., Gao, Z. Y., Cai, W. & Zhang, Z. G. (2007) DLC films fabricated by plasma
immersion ion implantation and deposition on the NiTi alloys for improving their
corrosion resistance and biocompatibility. Materials Science and Engineering: A,
454±455, 472±476.
Sunny, M. C. & Sharma, C. P. (1991) Titanium-protein interaction: changes with oxide
layer thickness. Journal of Biomaterials Applications, 6, 89±98.
Szycher, M. & Lee, S. L. (1993) Cardiovascular devices for the 1990s. Journal of
Biomaterials Applications, 8, 31±63.
Szycher, M. & Poirier, V. L. (1983) Synthetic polymers in artificial hearts: a progress
report. Industrial & Engineering Chemistry Product Research and Development,
22, 588±593.
Takami, Y., Nakazawa, T., Makinouchi, K., Glueck, J. & NosÂ, Y. (1997) Biocom-
patibility of alumina ceramic and polyethylene as materials for pivot bearings of a
centrifugal blood pump. Journal of Biomedical Materials Research, 36, 381±386.
Takami, Y., Yamane, S., Makinouchi, K., Otsuka, G., Glueck, J., Benkowski, R. & NosÂ,
Y. (1998) Protein adsorption onto ceramic surfaces. Journal of Biomedical
Materials Research, 40, 24±30.
Thoratec (2009) Ventricular assist devices (VAD). Thoratec Corporation. Available from:
http://my.clevelandclinic.org/heart/disorders/heartfailure/lvad_devices.aspx
[Accessed 18 July 2009].
Trevor, A. S., Hiroyuki, T., Shin'ichiro, K., Takehide, A., Kenneth, N. L., Marina, V. K.,
Kenji, Y. & William, R. W. (2007) Preclinical biocompatibility assessment of the
evaheart ventricular assist device: coating comparison and platelet activation.
Journal of Biomedical Materials Research Part A, 81A, 85±92.
Vroman, L. & Adams, A. L. (1969) Identification of rapid changes at plasma±solid
interfaces. Journal of Biomedical Materials Research, 3, 43±67.
Wang, D.-A., Ji, J., Sun, Y.-H., Shen, J.-C., Feng, L.-X. & Elisseeff, J. H. (2002) In situ
immobilization of proteins and RGD peptide on polyurethane surfaces via
poly(ethylene oxide) coupling polymers for human endothelial cell growth.
Biomacromolecules, 3, 1286±1295.
Wendel, H. P. & Ziemer, G. (1999) Coating-techniques to improve the
hemocompatibility of artificial devices used for extracorporeal circulation.
European Journal of Cardio-Thoracic Surgery, 16, 342±350.
￿ ￿ ￿ ￿ ￿
Search WWH ::




Custom Search