Biology Reference
In-Depth Information
149. Luttrell LM, Roudabush FL, Choy EW, et al. Activation and targeting of extracellular
signal-regulated kinases by beta-arrestin scaffolds. Proc Natl Acad Sci USA .
2001;98:2449- 2454.
150. Shenoy SK, McDonald PH, Kohout TA, Lefkowitz RJ. Regulation of receptor fate by
ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin. Science .
2001;294:1307- 1313.
151. Krupnick JG, Goodman Jr OB, Keen JH, Benovic JL. Arrestin/clathrin interaction.
Localization of the clathrin binding domain of nonvisual arrestins to the carboxy ter-
minus. J Biol Chem . 1997;272:15011- 15016.
152. Kang DS, Kern RC, Puthenveedu MA, von Zastrow M, Williams JC, Benovic JL.
Structure of an arrestin2-clathrin complex reveals a novel clathrin binding domain that
modulates receptor trafficking. J Biol Chem . 2009;284:29860- 29872.
153. KimYM, Benovic JL. Differential roles of arrestin-2 interaction with clathrin and adap-
tor protein 2 in G protein-coupled receptor trafficking. J Biol Chem . 2002;277:
30760- 30768.
154. Schmid EM, Ford MG, Burtey A, et al. Role of the AP2 beta-appendage hub in rec-
ruiting partners for clathrin-coated vesicle assembly. PLoS Biol . 2006;4:e262.
155. Baillie GS, Adams DR, Bhari N, et al. Mapping binding sites for the PDE4D5 cAMP-
specific phosphodiesterase to the N- and C-domains of beta-arrestin using spot-
immobilized peptide arrays. Biochem J . 2007;404:71- 80.
156. Meng D, Lynch MJ, Huston E, et al. MEK1 binds directly to betaarrestin1, influencing
both its phosphorylation by ERK and the timing of its isoprenaline-stimulated inter-
nalization. J Biol Chem . 2009;284:11425- 11435.
157. Coffa S, Breitman M, Spiller BW, Gurevich VV. A single mutation in arrestin-2
prevents ERK1/2 activation by reducing c-Raf1 binding. Biochemistry . 2011;50:
6951- 6958.
158. Seo J, Tsakem EL, Breitman M, Gurevich VV. Identification of arrestin-3-specific res-
idues necessary for JNK3 kinase activation. J Biol Chem . 2011;286:27894 - 27901.
159. Miller WE, McDonald PH, Cai SF, Field ME, Davis RJ, Lefkowitz RJ. Identification
of a motif in the carboxyl terminus of beta-arrestin2 responsible for activation of JNK3.
J Biol Chem . 2001;276:27770 - 27777.
160. Zhan X, Kaoud TS, Dalby KN, Gurevich VV. Nonvisual arrestins function as
simple scaffolds assembling the MKK4-JNK3 h 2 signaling complex. Biochemistry .
2011;50:10520- 10529.
161. Song X, Gurevich EV, Gurevich VV. Cone arrestin binding to JNK3 and Mdm2: con-
formational preference and localization of interaction sites. J Neurochem . 2007;103:
1053- 1062.
162. Song X, Coffa S, Fu H, Gurevich VV. How does arrestin assemble MAPKs into a sig-
naling complex? J Biol Chem . 2009;284:685 - 695.
163. Scott MG, Le Rouzic E, Perianin A, et al. Differential nucleocytoplasmic shuttling of
beta-arrestins. Characterization of a leucine-rich nuclear export signal in beta-arrestin2.
J Biol Chem . 2002;277:37693 - 37701.
164. Shenoy SK, Lefkowitz RJ. Receptor-specific ubiquitination of beta-arrestin directs
assembly and targeting of seven-transmembrane receptor signalosomes. J Biol Chem .
2005;280:15315 - 15324.
165. Gurevich VV. The selectivity of visual arrestin for light-activated phosphorhodopsin
is controlled by multiple nonredundant mechanisms.
J Biol Chem . 1998;273:
15501- 15506.
166. Gray-Keller MP, Detwiler PB, Benovic JL, Gurevich VV. Arrestin with a single amino
acid substitution quenches light-activated rhodopsin in a phosphorylation-independent
fashion. Biochemistry . 1997;36:7058- 7063.
 
Search WWH ::




Custom Search