Biology Reference
In-Depth Information
74. DeGraff JL, Gurevich VV, Benovic JL. The third intracellular loop of alpha
2-adrenergic receptors determines subtype specificity of arrestin interaction. J Biol
Chem . 2002;277:43247- 43252.
75. Gelber EI, Kroeze WK, Willins DL, et al. Structure and function of the third intracel-
lular loop of the 5-hydroxytryptamine2A receptor: the third intracellular loop is alpha-
helical and binds purified arrestins. J Neurochem . 1999;72:2206- 2214.
76. Raman D, Osawa S, Gurevich VV, Weiss ER. The interaction with the cytoplasmic
loops of rhodopsin plays a crucial role in arrestin activation and binding. J Neurochem .
2003;84:1040- 1050.
77. Vishnivetskiy SA, Schubert C, Climaco GC, Gurevich YV, Velez M-G, Gurevich VV.
An additional phosphate-binding element in arrestin molecule. Implications for the
mechanism of arrestin activation. J Biol Chem . 2000;275:41049- 41057.
78. Ohguro H, Palczewski K, Walsh KA, Johnson RS. Topographic study of arrestin using
differential chemical modifications and hydrogen/deuterium exchange. Protein Sci .
1994;3:2428- 2434.
79. Vishnivetskiy SA, Hosey MM, Benovic JL, Gurevich VV. Mapping the arrestin-
receptor interface. Structural elements responsible for receptor specificity of arrestin
proteins. J Biol Chem . 2004;279:1262- 1268.
80. Gurevich VV, Dion SB, Onorato JJ, et al. Arrestin interactions with G protein-coupled
receptors. Direct binding studies of wild type and mutant arrestins with rhodopsin, beta
2-adrenergic,
and m2 muscarinic
cholinergic
receptors.
J Biol Chem .
1995;270:720- 731.
81. Pulvermuller A, Schroder K, Fischer T, Hofmann KP. Interactions of metarhodopsin
II. Arrestin peptides compete with arrestin and transducin. J Biol Chem . 2000;275:
37679- 37685.
82. Dinculescu A, McDowell JH, Amici SA, et al. Insertional mutagenesis and immuno-
chemical analysis of visual arrestin interaction with rhodopsin.
J Biol Chem .
2002;277:11703 - 11708.
83. Feuerstein SE, Pulverm¨ ller A, Hartmann R, et al. Helix formation in arrestin
accompanies
recognition of photoactivated rhodopsin. Biochemistry . 2009;48:
10733- 10742.
84. Zhuang T, Vishnivetskiy SA, Gurevich VV, Sanders CR. Elucidation of inositol
hexaphosphate and heparin interaction sites and conformational changes in
arrestin-1 by solution nuclear magnetic resonance. Biochemistry . 2010;49:10473- 10485.
85. Zhuang T, Chen Q, Cho M-K, et al. Involvement of distinct arrestin-1 elements in
binding to different
functional
forms of
rhodopsin. Proc Natl Acad Sci USA .
2013;110:942- 947.
86. Vishnivetskiy SA, Francis DJ, Van Eps N, et al. The role of arrestin alpha-helix I in
receptor binding. J Mol Biol . 2010;395:42- 54.
87. Vishnivetskiy SA, Raman D, Wei J, Kennedy MJ, Hurley JB, Gurevich VV. Regula-
tion of
J Biol Chem .
arrestin binding by rhodopsin phosphorylation level.
2007;282:32075 - 32083.
88. Krasel C, Bunemann M, Lorenz K, Lohse MJ. Beta-arrestin binding to the beta2-
adrenergic receptor requires both receptor phosphorylation and receptor activation.
J Biol Chem . 2005;280:9528- 9535.
89. Gimenez LE, Kook S, Vishnivetskiy SA, Ahmed MR, Gurevich EV, Gurevich VV.
Role of receptor-attached phosphates in binding of visual and non-visual arrestins to
G protein-coupled receptors. J Biol Chem . 2012;287:9028- 9040.
90. Mendez A, Burns ME, Roca A, et al. Rapid and reproducible deactivation of rhodopsin
requires multiple phosphorylation sites. Neuron . 2000;28:153- 164.
91. Song X, Vishnivetskiy SA, Gross OP, et al. Enhanced arrestin facilitates recovery and
protects rods lacking rhodopsin phosphorylation. Curr Biol . 2009;19:700- 705.
 
 
 
 
 
Search WWH ::




Custom Search