Biology Reference
In-Depth Information
100. Meuwissen TH, Goddard ME. Bootstrapping of gene-expression data improves and
controls the false discovery rate of differentially expressed genes. Genet Sel Evol .
2004;36:191- 205.
101. Reiner A, Yekutieli D, Benjamini Y. Identifying differentially expressed genes using
false discovery rate controlling procedures. Bioinformatics . 2003;19:368- 375.
102. ChadwickW, Martin B, Chapter MC, et al. GIT2 acts as a potential keystone protein in
functional hypothalamic networks associated with age-related phenotypic changes in
rats. PLoS One . 2012;7:e36975.
103. Abdelmohsen K, Srikantan S, Tominaga K, et al. Growth inhibition by miR-519 via
multiple p21-inducing pathways. Mol Cell Biol . 2012;32:2530 - 2548.
104. Park SS, Wu WW, Zhou Y, Shen RF, Martin B, Maudsley S. Effective correction of
experimental errors in quantitative proteomics using stable isotope labeling by amino
acids in cell culture (SILAC). J Proteomics . 2012;75:3720- 3732.
105. Wu WW, Shen RF, Park SS, Martin B, Maudsley S. Precursor ion exclusion for
enhanced identification of plasma biomarkers. Proteomics Clin Appl . 2012;6:304- 308.
106. Elias JE, Gygi SP. Target-decoy search strategy for increased confidence in large-scale
protein identifications by mass spectrometry. Nat Methods . 2007;4:207 - 214.
107. Eng JK, McCormack AL, Yates JR. An approach to correlate tandemmass spectral data
of peptides with amino-acid sequences in a protein database. J Am Soc Mass Spectrom .
1994;5:976- 989.
108. Perkins DN, Pappin DJC, Creasy DM, Cottrell JS. Probability-based protein identifi-
cation by searching sequence databases using mass spectrometry data. Electrophoresis .
1999;20:3551- 3567.
109. Clauser KR, Baker P, Burlingame AL. Role of accurate mass measurement ( รพ / 10
ppm) in protein identification strategies employing MS or MS/MS and database
searching. Anal Chem . 1999;71:2871- 2882.
110. Zhang N, Aebersold R, Schwilkowski B. ProbID: a probabilistic algorithm to identify
peptides through sequence database searching using tandem mass spectral data. Proteo-
mics . 2002;2:1406- 1412.
111. Griffin TJ, Xie H, Bandhakavi S, et al. iTRAQ reagent-based quantitative proteomic
analysis on a linear ion trap mass spectrometer. J Proteome Res . 2007;6:4200- 4209.
112. Dayon L, Pasquarello C, Hoogland C, Sanchez JC, Scherl A. Combining low- and
high-energy tandem mass spectra for optimized peptide quantification with isobaric
tags. J Proteomics . 2012;73:769- 777.
113. Lange V, Picotti P, Domon B, Aebersold R. Selected reaction monitoring for quan-
titative proteomics. Mol Syst Biol . 2008;4:222.
114. Kim YJ, Zaidi-Ainouch Z, Gallien S, Domon B. Mass spectrometry-based detection
and quantification of plasma glycoproteins using selective reaction monitoring. Nat Pro-
toc . 2012;7:859- 871.
115. Witze ES, Old WM, Resing KA, Ahn NG. Mapping protein post-translational mod-
ifications with mass spectrometry. Nat Methods . 2007;4:798- 806.
116. Walsh CT, Garneau-Tsodikova S, Gatto Jr GJ. Protein posttranslational modifications:
the chemistry of proteome diversifications. AngewChem Int Ed Engl . 2005;44:7342- 7372.
117. Kamath KS, Vasavada MS, Srivastava S. Proteomic databases and tools to decipher post-
translational modifications. J Proteomics . 2011;75:127- 144.
118. Macek B, Mann M, Olsen JV. Global and site-specific quantitative phospho-
proteomics: principles and applications. Annu Rev Pharmacol Toxicol . 2009;49:199- 221.
119. Park SS, Maudsley S. Discontinuous pH gradient-mediated separation of TiO 2 -
enriched phosphopeptides. Anal Biochem . 2011;409:81- 88.
120. Hunter T. The phosphorylation of proteins on tyrosine: its role in cell growth and dis-
ease. Philos Trans R Soc Lond B . 1998;353:583- 605.
Search WWH ::




Custom Search