Biology Reference
In-Depth Information
19. Sakurai T, Amemiya A, Ishii M, et al. Orexins and orexin receptors: a family of hypo-
thalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior.
Cell . 1998;92:573 - 585.
20. Evans NA, Groarke DA, Warrack J, et al. Visualizing differences in ligand-induced beta-
arrestin-GFP interactions and trafficking between three recently characterized
G protein-coupled receptors. J Neurochem . 2001;77:476 - 485.
21. Dalrymple MB, Jaeger WC, Eidne KA, Pfleger KD. Temporal profiling of orexin
receptor-arrestin-ubiquitin complexes reveals differences between receptor subtypes.
J Biol Chem . 2011;286:16726- 16733.
22. Camina JP, Lodeiro M, Ischenko O, Martini AC, Casanueva FF. Stimulation by ghrelin
of p42/p44 mitogen-activated protein kinase through the GHS-R1a receptor: role of
G-proteins and beta-arrestins. J Cell Physiol . 2007;213:187 - 200.
23. Damian M, Marie J, Leyris JP, et al. High constitutive activity is an intrinsic feature of
ghrelin receptor protein: a study with a functional monomeric GHS-R1a receptor rec-
onstituted in lipid discs. J Biol Chem . 2012;287:3630 - 3641.
24. Matthaei S, Stumvoll M, Kellerer M, Haring HU. Pathophysiology and pharmacological
treatment of insulin resistance. Endocr Rev . 2000;21:585 - 618.
25. Lin FT, Daaka Y, Lefkowitz RJ. beta-arrestins regulate mitogenic signaling and clathrin-
mediated endocytosis of
the insulin-like growth factor I receptor.
J Biol Chem .
1998;273:31640 - 31643.
26. Dalle S, Ricketts W, Imamura T, Vollenweider P, Olefsky JM. Insulin and insulin-like
growth factor I receptors utilize different G protein signaling components. J Biol Chem .
2001;276:15688 - 15695.
27. Dalle S, Imamura T, Rose DW, et al. Insulin induces heterologous desensitization of
G-protein-coupled receptor and insulin-like growth factor I signaling by down-
regulating beta-arrestin-1. Mol Cell Biol . 2002;22:6272 - 6285.
28. Luan B, Zhao J, Wu H, et al. Deficiency of a beta-arrestin-2 signal complex contributes
to insulin resistance. Nature . 2009;457:1146 - 1149.
29. Usui I, Imamura T, Huang J, et al. beta-arrestin-1 competitively inhibits insulin-induced
ubiquitination and degradation of
insulin receptor
substrate 1. Mol Cell Biol .
2004;24:8929- 8937.
30. Baggio LL, Drucker DJ. Therapeutic approaches to preserve islet mass in type 2 diabetes.
Annu Rev Med . 2006;57:265 - 281.
31. Winzell MS, Ahren B. G-protein-coupled receptors and islet function-implications for
treatment of type 2 diabetes. Pharmacol Ther . 2007;116:437 - 448.
32. Dalle S, Ravier MA, Bertrand G. Emerging roles for beta-arrestin-1 in the control of the
pancreatic beta-cell function and mass: new therapeutic strategies and consequences for
drug screening. Cell Signal . 2011;23:522 - 528.
33. D'Alessio D. The role of dysregulated glucagon secretion in type 2 diabetes. Diabetes
Obes Metab . 2011;13:126 - 132.
34. Sonoda N, Imamura T, Yoshizaki T, Babendure JL, Lu JC, Olefsky JM. Beta-arrestin-1
mediates glucagon-like peptide-1 signaling to insulin secretion in cultured pancreatic
beta cells. Proc Natl Acad Sci USA . 2008;105:6614 - 6619.
35. Quoyer J, Longuet C, Broca C, et al. GLP-1 mediates antiapoptotic effect by phosphor-
ylating bad through a beta-arrestin 1-mediated ERK1/2 activation in pancreatic beta-
cells. J Biol Chem . 2010;285:1989 - 2002.
36. Ahren B. Role of pituitary adenylate cyclase-activating polypeptide in the pancreatic
endocrine system. Ann N Y Acad Sci . 2008;1144:28- 35.
37. Broca C, Quoyer J, Costes S, et al. beta-Arrestin 1 is required for PAC1 receptor-
mediated potentiation of long-lasting ERK1/2 activation by glucose in pancreatic
beta-cells. J Biol Chem . 2009;284:4332 - 4342.
 
 
Search WWH ::




Custom Search