Biology Reference
In-Depth Information
3. Caverzasio J, Palmer G, Suzuki A, Bonjour J. Mechanism of the mitogenic effect of fluo-
ride on osteoblast-like cells: evidences for a G protein-dependent tyrosine phosphory-
lation process. J Bone Miner Res . 1997;12:1975 - 1983.
4. Lau KHW, David JB. Molecular mechanism of action of fluoride on bone cells. J Bone
Miner Res . 1998;13:1660- 1667.
5. Vestergaard P, Jorgensen N, Schwarz P, Mosekilde L. Effects of treatment with fluoride
on bone mineral density and fracture risk—a meta-analysis. Osteoporos Int . 2008;19:
257 - 268.
6. Giustina A, Mazziotti G, Canalis E. Growth hormone, insulin-like growth factors, and
the skeleton. Endocr Rev . 2008;29:535 - 559.
7. Sugimoto T, Kaji H, Nakaoka D, et al. Effect of low-dose of recombinant human
growth hormone on bone metabolism in elderly women with osteoporosis. Eur
J Endocrinol . 2002;147:339 - 348.
8. Quarles LD, Haupt DM, Davidai G, Middleton JP. Prostaglandin F2 alpha-induced
mitogenesis inMC3T3-E1 osteoblasts: role of protein kinase-C-mediated tyrosine phos-
phorylation. Endocrinology . 1993;132:1505- 1513.
9. Soper DL, Milbank JBJ, Mieling GE, et al. Synthesis and biological evaluation of
prostaglandin-F alkylphosphinic acid derivatives as bone anabolic agents for the treat-
ment of osteoporosis. J Med Chem . 2001;44:4157 - 4169.
10. Qin L, Raggatt LJ, Partridge NC. Parathyroid hormone: a double-edged sword for bone
metabolism. Trends Endocrinol Metab . 2004;15:60- 65.
11. Shukla VK. Treating osteoporosis with teriparatide: many unknowns? Issues Emerg
Health Technol . 2003;51:1 - 4.
12. Mackay HJ, Twelves CJ. Targeting the protein kinase C family: are we there yet? Nat
Rev Cancer . 2007;7:554- 562.
13. Bouxsein ML, Ferrari SL. Coupling PTH and arrestins to uncouple bone formation from
resorption: a new road to osteoporosis anabolic therapy? IBMS BoneKEy . 2009;12:
470 - 476.
14. Ferrari SL, Bouxsein ML. Beta-arrestin-biased parathyroid hormone ligands: a new
approach to the development of agents that stimulate bone formation. Sci Transl Med .
2009;1:1ps1.
15. Gesty-Palmer D, Flannery P, Yuan L, et al. A beta-arrestin biased agonist of the para-
thyroid hormone receptor (PTH1R) promotes bone formation independent of
G protein activation. Sci Transl Med . 2009;1:1ra1.
16. Kenakin T, Miller LJ. Seven transmembrane receptors as shapeshifting proteins: the
impact of allosteric modulation and functional selectivity on new drug discovery.
Pharmacol Rev . 2010;62:265- 304.
17. Lagerstr¨m MC, Schi¨ th HB. Structural diversity of G protein-coupled receptors and
significance for drug discovery. Nat Rev Drug Discov . 2008;7:339- 357.
18. Fredriksson R, Lagerstr¨m MC, Lundin L-G, Schi¨ th HB. The G-protein-coupled
receptors in the human genome form five main families. Phylogenetic analysis, para-
logon groups, and fingerprints. Mol Pharmacol . 2003;63:1256- 1272.
19. R ¨ mpler H, St ¨ ubert C, Thor D, Schulz A, Hofreiter M, Sch ¨ neberg T.
G protein-coupled time travel: evolutionary aspects of GPCR research. Mol Interv .
2007;7:17 - 25.
20. Karlin A. On the application of “a plausible model” of allosteric proteins to the receptor
for acetylcholine. J Theor Biol . 1967;16:306- 320.
21. Thron CD. On the analysis of pharmacological experiments in terms of an allosteric
receptor model. Mol Pharmacol . 1973;9:1 - 9.
22. Kenakin T. Receptor conformational induction versus selection: all part of the same
energy landscape: agonists can differentially stabilize multiple active states of receptors.
Trends Pharmacol Sci . 1996;17:190- 191.
Search WWH ::




Custom Search